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Abstract

In the wake of the financial crisis of 2008, Bitcoin emerged as a radical new alternative
to the fiat currencies of the traditional banking sector. Through the use of a novel kind
of probabilistic consensus algorithm, Bitcoin proved it possible to guarantee the integrity
of a digital currency by relying on network majority votes instead of trusted institutions.
By showing that it was technically feasible to, at least to some extent, replace the entire
banking sector with computers, many significant actors started asking what else this new
technology could help automate. A subsequent, seemingly inevitable, wave of efforts
produced a multitude of new distributed ledger systems, architectures and applications,
all somehow attempting to leverage distributed consensus algorithms to replace trusted
intermediaries, facilitating value ownership, transfer and regulation.

In this thesis, we scrutinize distributed ledger technologies in terms of how they could
help facilitate the digitization of contractual cooperation, especially in the context of the
supply chain and manufacturing industries. Concretely, we consider them from three
distinct technical perspectives, (1) performance, (2) interoperability and (3) integration.
Voting systems, with or without probabilistic mechanisms, require significant time and
resources to operate, for which reason it becomes relevant to investigate how the costs of
running those systems can be mitigated. In particular, we consider how a blockchain, a
form of distributed ledger, can be pruned to in order to reduce disk space requirements.
Furthermore, no technical system part of a larger business is an island, but will have to be
able to interoperate with other systems to maximize the opportunity for automation. For
this reason, we also consider how transparent message translation between systems could
be facilitated, as well as presenting a formalism for expressing the syntactic structure of
message payloads. Finally, we propose a concrete architecture, the Exchange Network,
that models contractual interactions as negotiations about token exchanges rather than
as function invocations and state machine transitions, which we argue lowers the barrier
to compatibility with conventional legal and business practices.

Even if no more trusted institutions could be replaced by any forthcoming distributed
ledger technologies, we believe contractual interactions becoming more digital would
lead to an increased opportunity for using computers to monitor, assist or even directly
participate in the negotiation, management and tracking of business agreements, which
we see as more than enough to warrant the cost of further developing of the technology.
Such computer involvement may not just save time and reduce costs, but could also
enable new kinds of computer-driven economies. In the long run, this may enable new
levels of resource optimization, and not just within large organizations, but also smaller
companies, or even the homes of families and individuals.
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Chapter 1

Introduction

The last few decades has seen more and more aspects of human life entering into
the digital domain. Voice communication, television, banking, governmental services
and social networks are just a few examples. This development is largely driven by its
economical advantages. When information becomes directly accessible to computers,
it can be analyzed or managed automatically, which improves the effectiveness of, or
reduces the need for, human labor. Not all domains of human work are straightforward
to digitize, however. It is, for example, not a coincidence that we use the word computer
to refer to our electronic computing machines. The job of the human computer, someone
tasked with executing given calculations, was one of the first to be automated by the
machine. A computer machine is an automatable calculation device, which should make
it very apparent why it could replace the human computer early in its history. In order
to make the computing machine able to automate more kinds of human labor, however,
it needed to be endowed with more fundamental capabilities. Computer networking,
speech-to-text, vision, among many other such examples, were later created and can
today be built upon to enable the automation of increasingly complex use cases.

One particular computer capability emerged from curious circumstances toward the
end of 2008 and the beginning of 2009. In the wake of the global financial crisis, the
pseudonym Natoshi Sakamoto published a paper [1] and the source code of a novel kind
of computer software. The software, Bitcoin, was created as an alternative to the fiat
currencies of the traditional banking sector, which at this point many considered to have
lost its credibility. Through the use of a novel kind of probabilistic consensus algorithm,
Bitcoin proved it possible to guarantee the integrity of a digital currency by relying on a
substitute for network majority votes, proof-of-work, instead of on trusted institutions.
By showing that it was technically feasible to, at least to some extent, replace the entire
banking sector with voting computers, many significant actors, banks included, started
asking what else this new technology could help automate. A subsequent, and perhaps
inevitable, wave of initiatives attracted enough funding to produce a multitude of other
distributed ledger systems, architectures and applications, all somehow attempting to
leverage consensus algorithms to replace trusted intermediaries, that hitherto had been
facilitating value ownership, transfer and regulation, among other things.
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4 Introduction

1.1 Motivation

The technological capability introduced with Bitcoin, often referred to as “the blockchain”,
allows stakeholders with conflicting interests to maintain and append transactions to a
shared immutable ledger. Perhaps a bit unintuitively, this capability could have major
implications not just for conventional banks or digital currencies, but also for industries,
which may become able to integrate their value chains across stakeholder boundaries
without any mediators [2] [3]. In other words, distributed ledger technologies may enable
cooperating parties to digitize and automate contract handling, asset transfer, identity
handling and other forms of contractual interaction. This could serve to improve the
flexibility and effectiveness of contemporary manufacturing processes, without the cost
in money and loss of control typically incurred when entrusting a party as mediator.
Eventually, the technology may help facilitate economies largely dominated by machine
agents, autonomously buying and selling, producing and cooperating, all in the service
of their owners.

However, before proceeding to describe how these opportunities relate to the objective
of this thesis, we want to stop and consider the structures that incentivized us to pursue
them. In particular, the research in this thesis was funded via the Productive 4.0 project,1

which is also known by the more formal name EU ARTEMIS JU grant agreement number
737459. The project is funded in part by the European Union via ECSEL JU,2 and in
part by the 109 organizations participating in the project. By implication, our efforts
were shaped both by the overarching ambition of the project, which is to further digitize
and interconnect contemporary industrial processes, and by the partners that decided to
cooperate with us, which all have their own reasons for deciding to participate in such a
research project. Concretely, the companies most actively contributing to our work were
Volvo Trucks, SEB, NXP and Midroc. The names of the individuals concretely making
those contributions are listed in the Acknowledgments section earlier in the thesis. While
the needs and insights of those companies and individuals certainly have affected our
contributions, we have strived to only pursue generally applicable results.

1.2 Problem Description

The primary objective of this thesis is to investigate the requirements for meaningfully
digitizing contractual cooperation, with particular emphasis on the potential utility of
distributed ledger technologies. As fulfilling this objective in its entirety is way beyond
any reasonable scope of a thesis such as this, we divide it into three distinct perspectives,
(1) performance, (2) interoperability and (3) integration, and then address a limited
number of issues associated with each such. Before summarizing these perspectives as
three research questions, we first describe them and how they relate to the research
papers we list in Chapter 4. The research questions are revisited in Chapter 5, where we
consider the extent to which we answer them.

1See https://productive40.eu.
2See https://www.ecsel.eu.
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1.2.1 Perspectives

1. Performance. Computers tend to work orders of magnitude faster than humans,
which is one significant reason they have become such important instruments of
automation. However, a computer’s practical speed of operation depends on many
factors, among which is the complexity of the task it is set to execute. Distributed
ledger applications tend to require comparatively high numbers of messages to be
sent between peers to have them reach consensus, as well as requiring significant
storage space to store proposed or finalized transactions [4]. Reducing the amount
of required disk space is particularly important if wanting to have less capable, or
very long-lived, machines participate in distributed ledger networks, which may be
of particular interest in industrial contexts. We approach these issues in two ways.
Firstly, we consider the implications of shrinking a blockchain, a form of distributed
ledger, by pruning it of less relevant data, and, secondly, we consider alternatives
to the consensus mechanisms typically used by these systems. The first way is the
main theme of Paper A, while the second is considered as part of Paper C.

2. Interoperability. At this point in history, industrial production systems tend to
be staggeringly complex [5], often involving large numbers of machines, systems and
processes, which may have been accumulated and upgraded over decades. While
distributed ledger technologies could help improve flexibility and effectiveness of
these systems, they must communicate with their computer components to be of
any practical utility. One ideal could be to have some kind of means able to translate
any system interface into another such compatible with some other system, a kind of
universal adapter for computer communications. We contribute to the formulation
of such a means by outlining a conceptual method for message payload translation
in Chapter 3.3, building on previous efforts on message protocol translation by
H. Derhamy et al. [6], and then present a concrete way of modelling the basic
structures of that method in Paper B.

3. Integration. Manufacturing systems, power plants, supply chains, as well as other
forms of industrial enterprises, consist not only of mechanical and computer parts.
Those parts belong to larger corporate structures, shaped by customer demands,
business visions, resource planning systems, contractors, environmental regulations,
and so on. Distributed ledger systems tend to diverge from other technologies in
that they operate across both (1) organizational and (2) structural boundaries, join-
ing different companies and many of their systems, of both computers and humans,
into larger systems of systems. As using distributed ledger technologies may require
significant changes to business practices, integrating them becomes especially chal-
lenging. In Papers C and D we present an architecture that could be implemented
on top of a distributed ledger solution, in which inter-organizational interactions
are modeled as negotiations about ownerships. We consider how implementing that
architecture affects cooperation governance, privacy and performance. In Paper D
in particular, we investigate an implementation strategy we argue lower the barriers
to compatibility with conventional legal and business practices.
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1.2.2 Research Questions

Q1 What possibilities exist for making distributed ledgers require less disk space, even
if assuming new data will be added indefinitely?

Q2 What would be required to facilitate seamless integration between legacy systems and
distributed ledger technologies?

Q3 How can distributed ledger systems be fitted into the cooperational structures already
existing between industrial stakeholders?

1.3 Methodology

In a sense, the scientific method is both an ideal and a journey. An ideal, since the
outcome it is designed for, objective and applicable knowledge, is hard to acquire. A
journey, since the road from a scientific objective to a scientific achievement it is full of
haphazard roadblocks and meaningful learning experiences.

My work started with a thorough introduction to the aims and accomplishments
associated with the Productive 4.0 project and the Arrowhead Framework [7], as well as
being tasked with investigating the potential seen in the blockchain concepts [8] [9]. As my
Master’s thesis was about pruning transactions from blockchains [10], it was considered
relevant enough for me to rewrite into a conference paper. Around the same time, I
started to meet with representatives from companies part of the Productive 4.0 project
to discuss their visions and wants related to distributed ledger technologies. It took
about a year of discussions, ideas and arguments before it started to become clear what
kind of system these partners would benefit from. Before then, I finished a configuration
system with message translation capabilities as part of a course, and was directed to
write a paper about it. Having written two papers and documentation for a conceptual
Arrowhead system, I created a limited implementation of the systems discussed with our
partners. After finishing the implementation, I was able to write two papers about it
before having to focus on writing this thesis.

How does this story relate to the scientific method? All of my efforts were coordinated
together with my supervisors, which means that even though all nuances of scientific
valuation within our discipline were not known to me, my supervisors were actively
ensuring the quality of my work. Later, I learned that I was directed according to
the philosophy of Experimental Computer Science and Engineering, which “involves the
creation of, or the experimentation with or on, computational artifacts” [11]. Even though
I never set out to explicitly adhere to any formalized methodology, there are, however,
significant parallels between the way my research was conducted, Design Research [12],
and Case Study Research [13]. The former is about identifying business problems and
generalising their solutions, while the latter is about investigating existing scenarios and
proposing improvements. In my case, the business problems and scenarios were given,
together with abstract visions regarding their solution. However, it is hard for me to
evaluate if strict adherence to either of these would have yielded stronger results.
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1.4 Scope

Distributed ledger technologies tend to be of significant complexity, involving the use
of distributed consensus algorithms, computer language evaluators, cryptography, gossip
algorithms, and so on. Rather than being concerned mainly with any one constituent of
a distributed ledger system, we focus on the technical requirements for making such a
system become a meaningful component of a larger enterprise. In other words, we try
to generally understand the technical conditions required to digitize inter-organizational
cooperation, while also making concrete proposals for new constituents where existing
ones are perceived as insufficient. With the exception of Paper A, this implies that we
consider performance only theoretically, when we consider it at all. At this stage, it
also means that the technologies we concretely propose are intended to demonstrate how
certain problems could be solved differently, not how they should be solved in real-world
scenarios.

1.5 Outline

This compilation thesis is organized into two major parts. Part I, to which this outline
belongs, contains a description of the context that shaped and directed our concrete
research contributions, which are contained in Part II.

The rest of Part I is organized as follows. In Chapter 2, we briefly describe the
current state-of-the-art in distributed ledger technology, including descriptions of how
the technology operates and common variants of it. In Chapter 3, we extrapolate current
trends and our contributions into a road-map to a future where machines are able to make
financial decisions and form their own economies. Further, in Chapter 4 we describe how
our research papers fit into the context in this thesis, while, finally, Chapter 5 ends the
thesis with a discussion, our conclusions, ethical considerations and our thoughts on what
ought to be the focus of the distributed ledger community in the next few years.
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Chapter 2

Distributed Ledger Technologies

A distributed ledger is a log of events, maintained and updated by the members of
a distributed ledger network. The name comes from the accounting field, where ledgers
of currency transactions are used to record the movement of money between accounts.
They can be used for many other things than for tracking account balances, however.
Ledgers can record asset ownership transfers, vehicle inspections, assignment updates,
among many other things. While being able to record such events within a business is
interesting enough, a distributed ledger allows businesses and other entities to reliably
record interactions between themselves. Through clever use of cryptography and voting,
distributed ledger technologies can be used to ensure no practical opportunity exists for
any collaborating party to tamper with the events they record, which means that they
can be used as evidence in different kinds of regulation frameworks. There is, however,
currently no one way to implement these kinds of ledgers that suits all relevant types of
use cases. That, taken together with the large interest in the technology, has resulted in
a plethora of very distinct kinds of systems, with different approaches to programmatic
verification, compatibility with legal institutions, consensus mechanisms, and so on.

2.1 Overview

In this chapter, we briefly consider the technological developments that lead to the making
of the Bitcoin cryptocurrency, the explosion of derivatives that came after it, and the
technical motivations behind their creation. We also make an attempt to categorize and
compare a handful of popular or otherwise relevant distributed ledger solutions. Finally,
we close the chapter with a description of the primary constituents of a distributed ledger
system, how those constituents can be designed, and how they maintain the properties
of the system they constitute.

The chapter is not meant to be exhaustive. It should, however, provide interested
readers without strong knowledge on the topic an adequate introduction. If more depth
on the subject is desired, we advice looking at the references we use in this chapter, as
they should represent significant, or otherwise relevant, works within the field.

9
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2.2 History

While possible to begin a history like this at many different dates and times, we start
a few years after 1990. At this point, the Internet was taking the step from research
labs and early adopters into the world of the general public.1 The World Wide Web had
recently been created by Tim Berners-Lee at CERN, and was now starting to find its way
to the homes of the growing group of people owning personal computers. More investors
started to gravitate towards the Internet, which would eventually lead to the burst of the
dotcom bubble at the end of the decade. During this time of new ideas and increasingly
inflated expectations, efforts at digitizing contracts and money started to gain traction.

Nick Szabo, a young computer scientist, was working on his idea of a “computerized
transaction protocol that executes the terms of a contract”, or the “smart contract” [14]
[15]. Around the same time, Ian Grigg and Gary Howland were working on their Ricardo
payment platform, which, notably, involved “a method to identify and describe issues of
financial instruments as contracts”, producing so-called “Ricardian contracts” [16] [17].
Both the smart and the Ricardian contracts were concrete attempts to create digital
counter-parts to the conventional contract, but differed, however, in their generality,
relation to traditional legal authorities, and focus on automated regulation.2

During the same general period, in 1992, the cypherpunk movement was founded,
dedicated to using cryptography to protect the privacy of individuals from governments,
corporations and other large organizations [20]. The members of the movement directly
created, or otherwise influenced the creation of, HashCash, B-money, bit gold, as well as
other experimental solutions for representing money in digital networks [21]. The many
minor achievements of the movement culminated with the introduction of Bitcoin later
in 2008 [1], which combined Szabo’s smart contracts, immutable logs, a novel variant of
Byzantine fault tolerance, as well as cryptographic identities, into one useful application.
Through its subsequent and spectacular rise to popularity, Bitcoin proved it viable to
run a global payment network without a central authority, and, consequently, also helped
cement the technologies it built upon as reliable and acceptable in the public mind.

However, with Bitcoin’s rise to prominence, it became increasingly apparent that the
system has a number of significant limitations. For example, it only supports a limited
form of smart contracts, Scripts [22], it provides neither strong anonymity or strong
identity guarantees [23], it has proven to have significant operational costs [24], as well
as having high latency and low transaction throughput [25] [26] [27], all of which make
it unfit for many otherwise compelling use cases. Consequently, a plethora of alternative
solutions have been built in order to cater for different categories of use cases. Significant
examples include Ethereum [28], which provides extended smart contract capabilities,
ZeroCash [29], which facilitates stronger anonymity guarantees, Hyperledger Fabric [30]
[31], which may only be used within groups of well-known participants, Lightning Network
[32], which extends Bitcoin with high-frequency payment channels, among many other.

1See https://www.internetsociety.org/history for an excellent description of this history.
2Other relevant efforts predating the 2008 Bitcoin launch include OASIS LegalXML from 2001 [18] and

RuleML from 2005 [19], both of which are attempts to represent legal documents in a machine-verifiable
form. These examples are likely to represent only a small fraction of all that could be mentioned.



2.3. Classification 11

2.3 Classification

At the time of writing, the number of distributed ledger technologies in existance has
since long been too unwieldy to adequately consider all of them in a context like this. We,
therefore, focus on well-known or otherwise relevant examples with particular bearing on
our work. Concretely, we briefly consider Bitcoin [1], Ethereum [28], Hyperledger Fabric
[31] and R3 Corda [33]. These solutions represent two major ends of the distributed ledger
spectrum, the permissionless and the permissioned, as well as four distinct strategies at
regulating ledger updates. A summary of their properties is outlined in Table 2.1.

Table 2.1: Significant properties of four distributed ledger solutions, presented in terms of the
constituents introduced in Section 2.4. Note that some of the differences between these systems
are not visible. For example, even though Bitcoin and Ethereum use different, albeit similar,
consensus mechanisms, their properties seem identical. The reason for this is that we are
concerned with highlighting distinctions that impact how these solutions must and can be used,
which rules out details about performance improvements, state data structures, and so on.

Permissionless Permissioned

Bitcoin Ethereum H. Fabric R3 Corda

Proofs
– Identity Public Key Public Key Certificate Certificate
– Authorship Signature Signature Signature Signature
– Validity Proof-of-Work Proof-of-Work* Vote, by Peers Vote, by Notaries
Consensus
– Visibility Global Global Channel Only Peer Only
– Resolution Probabilistic Probabilistic Definitive Definitive
– Throughput Lower Lower Higher Higher
Contracts
– Validation Yes, via Scripts Yes, via Contracts Yes, via Policies Yes, via Flows
– Embedding Yes, in UTXOs Yes, in Auto. Agents No No
– Legal Integration No No No Yes, via Legal Prose

*We ignore that Ethereum also can operate using Proof-of-Stake or Proof-of-Authority to simplify our comparison.

2.3.1 Permissionless and Permissioned

Distributed ledger solutions such as Bitcoin and Ethereum operate without their users
explicitly creating any accounts. Rather, each user is represented by a public key [34],
often referred to as an address, created by each user in isolation. Each possible address is
an account, and access to the corresponding private key is what allows the account to be
controlled. As no central authority regulates account creation, these systems are often
referred to as being permissionless. Bitcoin and Ethereum can be and are permissionless
because they rely on the kind of consensus algorithm first introduced by S. Nakamoto
in [1], which does not assume complete knowledge about all system participants. As
identities are anonymous but activities public, users are said to be pseudo-anonymous.



12 Distributed Ledger Technologies

When systems such as Hyperledger Fabric and R3 Corda were designed, this lack of
control over users was regarded as a problem. Therefore, they require that each user is
represented by a certificate, which contains both a public key and details about the entity
represented by that key. Those certificates must, in addition, somehow be established
to be authentic. Consequently, these systems are referred to as being permissioned, as
permission is required by an arbitrary registrar to join any of their networks. Also, as
solutions such as Fabric and Corda were designed to be used, primarily, within smaller
groups of well-known participants, consensus algorithms like PBFT [35] or Raft [36] may
be adequate, even if they can only be used practically with smaller number of peers. An
advantage of using such consensus algorithms is that they can guarantee voting outcomes
definitely, while Nakamoto algorithms only makes such guarantees probabilistically [37].

2.3.2 Regulation Frameworks

Distributed ledger solutions tend to exist in order to guarantee that shared logs of events
are correct according to some arbitrary standards of correctness. A regulation framework
is whatever system is used to define and enforce such standards of correctness. Each of
the four solutions we compare has its own distinct framework, and additional proposals
of interest do exist, such as Alex Norta’s Self-Aware Contracts [38] and the Definition
Bank approach we describe briefly in Papers C and D. We proceed, however, to describe
only the approaches of the four solutions listed in Table 2.1, which should give a good
glimpse into the range of possibilities that exists when designing these kinds of systems.

• Bitcoin. While designed primarily as a payment platform, Bitcoin does provide a
user-programmable regulation framework. In particular, it requires that a limited
Forth-like programming language, referred to as Script [22], be used to formulate
the conditions for spending so-called Unspent Transaction Outputs, or UTXOs,
which are what hold the currency owned by the platform’s users. The language must
also be used to provide the data required to fulfill those conditions when attempting
to spend the funds of one or more UTXOs [39]. A basic UTXO condition would
be to require the signature of a certain private key, which would lock its funds to a
single user. Albeit not Turing-complete, the language can still be used to facilitate
multi-signature accounts, Lightning Network payment channels [32], and more.

• Ethereum. In addition to a currency, Ether, the Ethereum platform provides the
Ethereum Virtual Machine (EVM), as well as the possibility of creating special
users that are controlled by programs defined in its Turing-complete byte-code
format. These special users, referred to as contracts or autonomous agents [28],
execute their programs when transactions are sent to them, which may include
funds, program function arguments, as well as other things. While being able to
support advanced kinds of collaboration, such as ERC20 tokens [40], The DAO and
games like King of the Ether Throne, the platform has been plagued by different
kinds of exploits [41] [42]. These vulnerabilities could be seen as a consequence
of the wide range of possibilities the EVM provides, and the fact that contracts
cannot be updated after being deployed, even if critical bugs are discovered.
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• Hyperledger Fabric. Rather than requiring that all network maintainers execute
the exact same version of each contract, as does Ethereum, Hyperledger Fabric
forces each maintainer to deploy its contracts independently [43]. Consequently,
different variants and versions of contracts may co-exist, which solves the problem
of not being able to update deployed contracts. Concretely, Fabric contracts, or
chaincodes, are containerized applications, interacted with via message passing [31].
Each successful chaincode invocation produces a read-write set, which must be
acceptable according to an endorsement policy enforced within a group of peers, or
channel. Such policies may require that read-write sets are signed by certain peers,
as well as being acceptable according to any custom validation rules. If approved,
the read-write set is eventually appended to the replicated ledger maintained within
the channel. Also, while no explicit means officially exist for integration with legal
institutions, there are efforts, such as the Accord project [44], aimed at facilitating
such capabilities. Lastly, while being able to implement a currency system, Fabric
does not natively provide an equivalent to Bitcoins or Ethers.

• R3 Corda. Just as Fabric, R3 Corda does not provide a native currency or embed
its contracts, or flows, into its ledger, again implying that such flows can be updated
when circumstances change or bugs are discovered. While Ethereum and Fabric
model their contracts as a state machines mutated by invoking designated methods,
Corda transactions apply functions to state objects, which may then be transformed
into one or more new such objects. Each state object can only be used in a successful
transaction a single time, which enables Corda to use a different kind of consensus
model [33]. Concretely, transactions are normally only sent between pairs of peers,
allowing each pair of peers to construct their own unique state data structures
without having to reveal sensitive information to other parties. When state objects
are used to change asset ownerships, however, their hashes can be presented to so-
called notary pools, which can attest whether or not that hash has been presented
to them before or not. Given that the pool of notaries can be trusted, which reach
agreement through a distributed consensus algorithm, double-spending and similar
forms of misconduct can be prevented, even if the notaries are never shown the
actual state objects they vote about. Also, Corda allows state objects to refer to or
include legal prose, which is any kind of suitable legal document. We are, however,
unaware if such legal prose has ever been tried fruitfully in a court of law.

Whether or not a given solution should include a native currency, embed its contracts
directly into its ledger, or refer to legal prose, are all examples of trade-offs that can
be made to cater for certain kinds of use cases. Bitcoin and Ethereum are designed
to support ad-hoc transactions or collaborations between users all over the world, even
when having little knowledge of each other. Fabric and Corda, on the other hand, are
created to help automate collaborations performed between parties that already have
knowledge of each other and existing incentives to collaborate. Having gone through our
descriptions of the just mentioned systems, it should be apparent that these assumptions
motivate different design decisions, which in turn result in distinct system properties.
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2.4 Characterization

What is a distributed ledger solution? It is a multi-node application that maintains a
shared ledger of transactions, where each transaction represents a commitment of its
author. Concretely, each ledger transaction modifies a state, which is a data structure
that determines a current set of rights and obligations associated with the users of the
solution. The concrete type of data structure is not important, however. It could consist
of accounts and balances, key/value maps, relational database tables, and so on. A simple
example of such a state data structure is given in Figure 2.1.

Time

State

Transaction +3

3 1 8 -10

-2 +7 -9

Figure 2.1: A naive distributed ledger whose state is altered by executing transactions. Each
transaction carries either an addition or a subtraction, while new states are created by adding
the previous state to a new transaction. The first transaction, represented by a dot, is sometimes
called the genesis transaction. In this example it contains nothing.

As the state of a distributed ledger solution determines something as critical as the
rights and obligations of the users of the system, it is paramount to ensure that is behaves
predictably at all times. This is guaranteed via a system-of-proof, which relies on a
consensus mechanism, which uses a regulation framework, as shown in Figure 2.2.

Regulation Framework

Consensus Mechanism

System-of-Proofs

Figure 2.2: The three abstract constituents of a distributed ledger system. A system-of-proof
depends on a consensus mechanism in order to establish ledger correctness, which in turn
relies on a regulation framework to determine how to vote during the consensus procedure.

The system-of-proof guarantees that each transaction, as well as the ledger as a whole,
can be trusted to be correct. The consensus mechanism enables the ledger maintainers to
coordinate the appending of new transactions. Finally, the regulation framework provides
the rules necessary to determine whether or not individual transactions express valid
commitments.
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2.4.1 System-of-Proofs

For a distributed ledger solution to be of any practical value, any parties using it most be
able to rely on that it is correct. Concretely, this means that (1) each user that is able to
influence the ledger can be reliably identified, (2) each transaction can be verified to have
remained unaltered since its creation by a specific user, and (3) all ledger transactions
follow the rules of a regulation framework, as established via a consensus mechanism.

Identity

Ensuring parties can be reliably identified is typically accomplished through the use of
public key cryptography, as in all the distributed ledger systems we mentioned up until
this point [1] [28] [31] [33]. Each user creates its own public/private key pair, submits
the public key to a registrar together with any additional information, if at all required,
and then uses its private key to prove its identity as needed [34].

Authorship

Public key cryptography can, apart from identifying users, also be used to establish that a
given fact has been signed, or endorsed, by a specific user. A signature is the combination
of (1) a plaintext, (2) a public key, (3) a hashing function and (4) the encrypted hash
of the plaintext, where the private key corresponding to the mentioned public key was
used to encrypt the hash [34]. If the plaintext is altered, any other user can notice it by,
(1) hashing the plaintext using the hashing function, (2) decrypting the signature into a
hash using the public key and (3) comparing the two hashes, which then will not match.

An interesting consequence of using public key signatures is that hash pointers can
be used to refer to material beyond the signed plaintext. Such pointers are simply the
hashes of other plaintexts, or any other kind of document. If those other documents
are modified, their hashes will no longer match those embedded in the signed plaintext.
Consequently, the signature of the original plaintext not only confirms that a certain user
endorsed its contents, but also the the user endorses any contents that plaintext refers
to. An example of such a signed plaintext is given in Figure 2.3.

Arbitrary DocumentsSignature

Hash

Plaintext

Hash

Hash

Hash

Hash

Figure 2.3: A hashed plaintext, where the hash of that plaintext is signed using the private key of
an arbitrary user. As the signed plaintext contains additional hash pointers, also the documents
referred to can be verified to be unaltered since the signing of the plaintext.



16 Distributed Ledger Technologies

While a hash cannot be turned into its original plaintext, an entity given (1) a set
of relevant plaintexts and (2) a signature, becomes able to determine whether or not
those plaintexts are referred to by the signature. In the context of distributed ledger
solutions, this can be used to reliably refer to contracts, transactions, or external data.
One particularly interesting use of hash pointers is to guarantee that the order of some
set of transactions has not been tampered with. This can be accomplished by having
every transaction include the hash of its direct predecessor, as in Figure 2.4.

Signature3

Hash3

Plaintext3

Hash'2

Signature2

Hash2

Plaintext2

Hash'1

Signature1

Hash1

Plaintext1

0

Figure 2.4: A series of signed plaintexts, each referring to a previous such via a hash pointer,
except for the first. Note that each back reference is the hash of both a plaintext and a signature.
A result of this schema is that each new plaintext becomes an endorsement of all previous such.

In blockchain systems, transactions are typically grouped together into blocks, each
of which contains a hash pointer to the block directly proceeding it. This grouping
into blocks is, however, primarily a means to optimize the performance. Individual
transactions can be arranged in the same way. Bitcoin [1], Ethereum [28] and Hyperledger
Fabric [31] are examples of systems grouping their transactions into blocks, while R3
Corda [33] is one example of a system not grouping transactions.

Validity

Ensuring that transactions refer to credible identities and can be proved to be unaltered
does not in and of itself guarantee that they contain meaningful data. That is established
through each ledger maintainer controlling each transaction in relation to a regulation
framework, and then voting about it within a group of peers.

2.4.2 Consensus Mechanism

The consensus mechanism allows an effective majority of maintainers to decide what
transactions to include in their ledger or ledgers. Using a majority of maintainers rather
than a trustee spreads reliance from a single party to a group of parties, which can be an
effective strategy to circumvent certain middle-men. Currently, there are many concrete
consensus mechanisms in use by various distributed ledger solutions [45] [46]. In order
to reduce scope, we generalize by categorizing them into three groups, which are (1)
request-response consensus, (2) explicit voting and (3) substitute voting.
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Request-Response Consensus

While perhaps not typically thought of as a consensus mechanism, the request-response
messaging paradigm, often used in distributed computer systems, could be seen as a
ballot of two voters. For example, some voter A formulates and votes for a proposal p,
includes it in a message mp,A→B and sends it to B. If B rejects mp,A→B, the ballot could
be though of as ending in a tie, which means no action is taken. If B accepts mp,A→B,
on the other hand, all votes were in favor of p, which is then executed.

When only two parties collaborate, this consensus model may suffice. If the parties
desire to have proof of each proposal acceptance, signatures and hashes can be used as
explained in Section 2.4.1. This kind of consensus is supported by R3 Corda [33], and is
something we explore as parts of Papers C and D. In particular, it does not require any
data to be revealed to third parties that would otherwise have to take part in the ballot,
which makes its use appealing in contexts where privacy is important.

Explicit Voting

With explicit voting, we refer to systems in which votes are counted rather than being
represented by some kind of weight, as we consider in the next section. We have already
mentioned PBFT [35] and Raft [36], but other alternatives exist [45]. Some of these
solutions are Byzantine Fault Tolerant (BFT), which means that they keep working even
if a certain minority of voters actively try to manipulate the ballots, while others are
referred to as being Crash Fault Tolerant (CFT), which means that some voters may
crash, but none of them are expected to be malicious or act arbitrarily [47]. PBFT is an
example of the former kind, while Raft is an example of the latter.

Explicit voting algorithms typically require that all voters are known before-hand.
This makes them suitable for permissioned distributed ledger solutions, as the complete
set of ledger maintainers are always known. Hyperledger Fabric is one example of a system
that uses this kind of voting procedure [31]. However, as these algorithms typically require
that all voters count all votes, or at least enough to be sure of an effective majority, the
number of messages required to reach consensus per participant tends to increase with
each new maintainer. Transaction throughput is, consequently, lowered by an increase
of voters, as can be seen for the CFT algorithm Paxos in [48] and [49], which is claimed
to have performance characteristics similar to Raft in [36].

Substitute Voting

The idea of substitute voting is to find a way to estimate popularity without organizing
a ballot and counting votes. While it may seem a bit unintuitive, it is not difficult to find
real-world analogies. For example, if wanting to know whether or not a crowd of people
favor pizza or sushi for lunch, they could be asked to sceam “yes” as loud as they can
as each alternative is named. Whichever alternative resulted in the loudest noise would
be considered the majority winner. Another example could be to look at the tare on
doors to find the most popular entrances and exists of a building. While estimates such
as these may be highly inaccurate, they could be adequate for certain use cases.
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The Bitcoin consensus algorithm [1] relies on an analogous kind of voting substitute,
sometimes referred to as weight. The history of transactions with the highest weight will
be considered authoritative all honest nodes. To understand how Bitcoin determines this
weight, we first need to explain the three major constituents of its consensus procedure,
which are (1) transaction dissemination, (2) mining and (3) block election.

1. Transaction dissemination. When any Bitcoin user wishes to transfer any of
its funds, it must create a transaction and send copies of it to as many miners as
reasonably possible. A miner is a user that actively participates in the creation of
new blocks, which are batches of transactions that are accepted or reject collectively.
Each such block, significantly, refers to an earlier block of transaction via a hash,
which means that the blocks form chains of blocks, or blockchains.

2. Mining. Each miner collects and validates incoming transactions while also trying
to produce a proof-of-work. A proof-of-work is the solution to a cryptographic
puzzle that can only be solved by trying random solutions. The puzzle is always
formulated in terms of the hash of the most recent authoritative block. The first
Bitcoin node to find the next puzzle solution becomes the legitimate creator of the
next block and can claim a reward in the Bitcoin currency.

3. Block election. A miner ends its attempt to produce a proof-of-work when it
either (A) finds a solution, or (B) gets a block with a solution from another miner. In
the case of the former, the miner assembles its own block from (1) the transactions
it collected, (2) the proof-of-work it found and (3) the hash of block preceding the
created one, and then spreads the block to other nodes. It then continues by trying
to find a proof-of-work for whatever block is now the latest authoritative such.

A consequence of this procedure is that individual nodes may receive blocks created
by different miners in isolation. The occurrence is referred to as a fork, as the result
is the existence of two or more valid branches of blocks, as depicted in Figure 2.5.
The consensus protocol stipulates that the block with the highest weight is selected,
where weight is calculated from the number of transactions, proofs-of-works, and
other details, included in each block and all previous blocks it refers to.

Genesis Block

Branch A

Branch B

Figure 2.5: Chained blocks of transactions, with a fork after block 3. According to the Nakamoto
consensus protocol [1], miners must only build on the chain with the highest known weight. If
assumed that branch A is heavier, then the two blocks only part of branch B must be ignored.
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How does this procedure produce a substitute for voting? In effect, each miner votes
on the chain of blocks it believes in by trying to find a proof-of-work for its next block. In
other words, the act of finding a proof-of-work is the voting, while the weight observable
in a chain of blocks is proof of how the votes have ended in the past. There are several
alternatives to both proof-of-work as weight and the use of Nakamoto consensus when
larger numbers of users need to reach consensus, some of which are described in [46] [50].

However, this kind of voting is not without its drawbacks. We have already implied
that it may seem like a transaction has been accepted by the ledger maintainers for a
while, only for the maintainers to forget it by changing to a different branch of blocks.
Even if the probability of such a change of branch to happen decreases over time, the
possibility remains real [37]. Another problem arises when individual miners, or pools
of miners, become able to try significantly more proof-of-work solutions per second than
the rest of the maintainers, as considered in [51].

2.4.3 Regulation Framework

The last primary constituent, and what could be considered the foundational component
of a distributed ledger solution, is the regulation framework. Its primary function is to
dictate what may and what may not be recorded in the ledger maintained by the system
in question. This to ensure that the ledger provides a meaningful description of the rights
and obligations of its maintainers. More specifically, such a ledger consists of transactions
that may be executed in sequence to produce a state data structure.

Transactions

We started our characterization of distributed ledger solutions by claiming that their
transactions represent commitments. While there may be many ways of modeling such
commitments, we do so here by assuming that transactions are function invocations.3

For example, a transaction may express that A wants to transfer x amount of currency
to B. In this case, the commitment is to provide B with currency. Another example
could be that A wants to give up ownership of item y in exchange for item z owned by B.
In this case, two authors commit to exchanging items with each other. To ensure that
transactions are legitimate commitments of their authors, digital signatures are typically
used. In the first example, where A transfers money to B, the signature of A would
likely suffice. In the second example, however, where two users exchange ownerships,
both signatures would likely be required to facilitate the same kind of confidence.

Concretely, a transaction could be said to consist of (1) a set of signatures, (2) the
name of an invoked function and (3) any arguments, apart from any other details required
by consensus algorithms, for time tracking, and so on. In the case of our first example,
the function name could be “transferTo” and the arguments could be x and B. In the
second example, the function could be “exchange” and the arguments y and z.

3In Papers C and D, we instead refer to transactions as finalized exchanges and consider them to
always cause so-called tokens to change owners. Even though the function-and-arguments abstraction
is often used by distributed ledger solutions, such as [28] [30] [33], its use is by no means mandatory.
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Transaction Execution

When a transaction is executed, the function named in the transaction is looked up and
provided with the signatures and arguments in the transaction. If the function invocation
fails, which it only does if the commitment the transaction describes is unsound, the
transaction is considered invalid and should not be part of any ledger maintained by the
solution. If the invocation is successful, however, the transaction will eventually cause a
state data structure to be updated. The exact details regarding when transactions are
executed and when their results cause a state change depends on the implementation
of the distributed ledger solution in question. It also varies whether or not the users of
the solution are allowed to define their own functions, and what those functions then
are capable of. While some form of programmability seems to be the norm, via smart
contracts or otherwise, Cryptonite [52], for example, provides only a fixed set of functions.

State Data Structures

When a function invocation is successful, it causes a state data structure to be updated.
The data structure could be thought of as a means to determine the current set of rights
and obligations of all users of a distributed ledger solution. A right could, for example,
be ownership of and amount of currency and the possibility of transferring it to other
users. An obligation could, on the other hand, be a commitment to drive any paying
user between certain locations. The concrete form of the state data structure depends
on what is considered the most straightforward way for to fulfill its purpose. It could,
for example, be a set of accounts and balances or key/value stores.

2.5 Summary

The distributed ledger technologies we see today can trace their roots back to efforts such
as Nick Szabo’s smart contracts [15] and the early work of the cypherpunk movement [21].
These efforts eventually culminated with the introduction of Bitcoin in 2008 [1], which
soon became the subject of a global hype [8]. Bitcoin’s raise to popularity proved the
viability of the technology used to construct it, which in turn created significant interest
in adapting the technology for new kinds of use cases. As a result, two categories of
distributed ledger systems arose, the permissionless, with examples such as Bitcoin and
Ethereum [28], and the permissioned, which includes examples such as Hyperledger Fabric
[31] and R3 Corda [33]. In the former kind of system, variants of the Nakamoto consensus
algorithm [1] dominate due to them facilitating larger number of maintainers and not
requiring any one node to have complete knowledge of the users of the system. In the
latter kind of system, traditional distributed consensus algorithms, such as PBFT [35],
are used as they provide stronger consensus guarantees and provide higher throughput
[26] [48] [49]. Irrespective of category, a distributed ledger solution always consists of (1)
a system-of-proof, (2) a consensus mechanism and (3) a regulation framework, allowing it
to (1) prove the correctness of its ledger, (2) coordinate the creation of new ledger entries
and (3) validate ledger entries and map them to user rights and obligations.



Chapter 3

The Road to Machine Economies

If reliable distributed ledger solutions can be constructed that overcome all current
performance, interoperability and integration issues, what concrete types of applications
would that facilitate? What would then become the most relevant research topics, and
how would their results shape cultures, economies and power structures? These questions
are all relevant to ask, and there is no shortage of speculation about their answers [8]
[9] [53] [54] [55] [56]. However, each such speculation is formulated from a unique per-
spective, which means that they both compete and enrich each other. We believe serious
investigators do well to consult many kinds of predictions and perspectives to improve
their chances of making relevant preparations for future trends and disruptions.

3.1 Overview

In this section, we afford ourselves to speculate freely about the future of our research
contributions and wider research area. We begin by considering the three main topics
of the thesis, which are the (1) performance, (2) interoperability and (3) integration of
distributed ledger technologies. We then end by extrapolating the trends we observe
and try to make predictions about how these will shape research and societies in the
decades to come. In summary, we predict that the vast majority of concrete financial and
contractual decisions will be made autonomously by machines, but that those machines
will act according to higher-level policies formulated by humans.

We recognize that it is hard to be accurate when making these kinds of predictions,
as individual details may alter the trajectories of, what could otherwise be thought of,
straightforward chains of events. However, these kinds of predictions can trigger fruitful
discussions about how downsides of the projected developments can be mitigated, help
motivate research funding, as well as enable people to make other kinds of preparations
for upcoming shifts in cultural, economic or political structures. It should be had in mind,
however, that there is a significant risk that our predictions will turn out to be incorrect.
If serious about wanting to understand future developments, many more sources and
experts should be consulted.

21
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3.2 Performance

Permissionless distributed ledger solutions, such as Bitcoin or Ethereum, tend to have
significant limits to throughput and latency [25] [26]. For example, Bitcoin and Ethereum
can only handle up to 7 and 20 transactions per second, respectively. This in contrast
to Visa, an electronic funds transfer provider, which, according to [26], is able to handle
up to about 10 000 transactions per second. Furthermore, a Bitcoin transaction requires
about 10 minutes or more to be processed [25], while we believe most people using
Visa cards are used to it taking no more than a few seconds. At the other end of the
spectrum, permissioned solutions have a network size problem [26]. The kind of consensus
algorithms these systems currently tend to use cannot realistically scale to hundreds of
maintainers, which means that they are confined to use cases where only a limited number
of maintainers are required. Additionally, when the rate of created transactions is high,
both of these categories of systems have a storage capacity problem.

What would happen if these problems ceased to be relevant? We could, for example,
assume that higher network bandwidths, faster chips, new kinds of algorithms, or denser
storage solutions become available. Another contributor could be improvements to the
ledger pruning algorithm we present in Paper A, which would allow storage space to be
used more efficiently. However these problems are mitigated, we believe the result would
be that the technology could become ubiquitous. Everything from smart bolts to toilet
paper dispensers could participate in distributed ledger economies. If we assume that the
solution we imagine would be straightforward to use for most people, it could become
feasible to charge very small fees for activities that today often have to be funded in other
ways, like visiting websites, listening to music, using public restrooms, etc. It could also
mean that it becomes viable to have Internet-connected devices buy resources from each
other, such as gas or electricity, as a way to minimize resource waste.

What industries would be disrupted by such developments? Most significantly, we
believe it would be the financial industry [57]. If money can be transferred cheaply
without the assistance of a bank, those banks would loose an important source of revenue.
Also, if legal tender can be transferred without a central bank, or if central banks adopt
distributed ledger technologies, banks would likely need to adapt to major regulatory
changes. However, we do not believe the need for the other services banks provide is
going to disappear, such as loans, liquidity forecastings, financial instruments, and so on.
Other potential disruptions, such as new forms of insurance, would likely need more than
only improvements to distributed ledger performance.

The advertising industry could be another subject of such disruption. Cheap and easy
payments could popularize alternatives to watching advertisements, which would reduce
the influence of Facebook [58], Google [59] and other companies primarily living off selling
advertising space, or at least force them to extend their revenue models. Other indus-
tries, like the transportation, manufacturing and e-commerce industries, would likely
benefit from transitioning to distributed ledger payment systems, in terms of lower costs
and more room for digitization. However, if the technology cannot be integrated more
effectively than today, we do not expect these industries to face any related disruptions.
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3.3 Interoperability

As we already covered in Section 1.2.1, one major barrier to the adoption of distributed
ledger technologies is the effort required to integrate them with existing systems. If
a means could be identified that would allow seamless interoperation between legacy
systems and distributed ledger solutions, perhaps in the way we propose in Section 4.3,
it could significantly lower the time and costs associated with the adoption and use
of the technology. This would in turn lead to lower costs of testing, deploying and
upgrading distributed ledger solutions, which would speed up the rate of innovation and
lower the barriers to using the technology fruitfully. While perhaps not a direct vehicle
of disruption in and of itself, access to low-cost interoperation may lead to disruption
solely by making more kinds of companies able to use the technology to distinguish
themselves from their competitors. It could also make it more feasible for home users
to use distributed ledger solutions, helping them buy and sell surplus solar power, share
interesting snippets captured by home surveillance cameras, and so on.

3.4 Integration

While advances in the performance and interoperability of distributed ledger technologies
may be required to make them economically feasible, advances in integration are required
to make them practically useful in more settings. As far as we can tell, the only type
of application of distributed ledger technologies that has been commercially successful is
the management of currencies, whether it be Bitcoins [1] or ERC20 tokens [40]. Other
projects, such as the DAO, an organization where financial decisions must be approved
via a vote, have failed more or less spectacularly [41]. Why is this the case? We believe
it comes down to two major factors, (1) immaturity and (2) isolation. With the former,
we mean that problems such as managing bugs, or knowing what kinds of collaborations
Etherum is suitable for, do not have well-understood solutions. With the latter, we
mean that distributed ledger technologies are hard to integrate with the technologies and
business practices prevalent in most markets this day. In particular, integration with
legal institutions is one important kind of integration that is still missing [60].

What would happen if these problems ceased to be relevant? We could assume that
legal frameworks are developed that make most national courts of law accept certain
distributed ledger technologies and consider the data they generate as proofs. Perhaps
would some of those systems be based on our Exchange Network architecture, which
we present in Papers C and D. Initially, we believe the technology would be regarded
primarily as a way to digitize existing structures between collaborating companies, such
as between manufacturers and suppliers, rather than as a tool for innovation. Paper
contracts would be replaced with digital such, with little to no variations between the
original contracts and their digital counter-parts. As computers are faster than humans,
however, early innovators could try to drastically decrease the scope of agreements and
increase the frequencies at which they are made, which could increase process granularity
and efficiency.
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In the longer term, we believe the most significant impacts of improved integration will
be that it (1) lowers the costs of collaboration and (2) facilitates unprecedented degrees of
micromanagement. Firstly, as collaborations takes less time to set up, operate, follow up
and terminate, corporations are given larger freedom to change collaborators when their
incentives change. This may lower the barriers to market entry, which in turn could leave
more room for competition. Secondly, when contracts no longer are written primarily
for humans to follow, but computers, they can become staggeringly complex by today’s
standards. This has implications not just for agreements between companies, but also on
what kinds of rules law-makers can expect organizations to follow. For example, rather
than having a couple of criteria for calculating income taxes, hundreds of criteria could
be used without it increasing costs significantly for the companies that would have to
follow them, if they have computers that can manage the calculations for them.

What kinds of disruption could such developments be expected to cause? More than
any other, we believe that legal institutions and enterprises would be disrupted. When
legal institutions work out new best-practices, laws and standards, the rest of the legal
system will have to follow, even if the old practices remain accepted. For example,
a litigation where all proofs are digital could become significantly less expensive than
such involving traditional paper proofs, as computers would be able to assist more than
previously possible in verifying documents, receipts and legal circumstances. This means
that new competences will be in demand, which may lead to new kinds of legal firms,
lawyers and other experts outcompeting the contemporary ones. Another, albeit related,
form of disruption may occur within business-to-business markets. If a company is too
slow at adopting the new technologies, it may become less in demand as it cannot offer
the same kinds of contractual flexibility, granularity and frequency as its competitors.

3.5 Further Down the Road

Given that all performance, interoperability and integration issues are solved, what will
then be the most pressing research questions? The three categories of issues we mentioned
are all about infrastructure, which is another way of saying that they are about taking
cooperational processes from the physical domain into the digital. When those processes
are fully and adequately digital, the next step is to make them autonomous. Research
from the Artificial Intelligence community, like that on multi-agent systems summarized
in [61], could likely be improved and adapted for this particular kind of use cases. The
result would be that computers become able to manage more and more aspects of our
economies, according to higher-level policies formulated by humans. As they can do so
faster and more accurately than humans possible could, we expect that the vast majority
of financial interactions eventually will be executed by computers. Trying to predict how
such machine-dominated economies would affect society is hard, however, as these would
develop alongside other technological innovations, cultural trends, and political changes.
Perhaps we will see that most individuals use computer assistants to budget and manage
their economies, or it becoming ubiquitous to own household robots that also produce,
buy and sell goods and services with neighbors? The future will tell.



Chapter 4

Contributions

The purpose of this thesis is twofold, (1) to provide a tangible artifact that can be
used by the scientific community to assess the academic competence of myself, Emanuel
Palm, and (2) to help interested readers gain a deeper understanding about the contexts
and observations that lead my supervisors I to write the papers included in the second
part of the thesis. By implication, the primary contributions we, my supervisors and I,
make to the scientific body of knowledge about distributed ledger technologies it not this
thesis itself, but the four papers it contains.

4.1 Overview

In this section, we go through each of the four papers included in Part II, in the order they
are presented there. The purpose of this review is to provide motivations, summaries and
to help clarify how I, Emanuel Palm, contributed to each of those papers. The papers
correlate with the perspectives and research questions introduced in Chapter 1 as depicted
in Figure 4.1.

Integration Paper C

Paper D

Interoperability Paper B

Performance Paper A

Q3

Q2

Q1

Figure 4.1: An overview of how the four papers reviewed in this section relate to the research
perspectives and questions in Section 1.2.

At the time of writing, Papers A and B have been accepted and presented at academic
conferences, Paper C have been accepted but not yet presented at such a conference, while
Paper D has been submitted to a journal, but has not yet been accepted or rejected. All
of Papers A, B and C either have been or are to be published in conference journals.
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4.2 Paper A

Title: Selective Blockchain Transaction Pruning and State Derivability

Authors: Emanuel Palm, Olov Schelén, Ulf Bodin

Published in: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT)

Motivation: The paper is a rewrite of my Master’s thesis [10]. The rewrite was regarded
as a good way for me to get a first paper published and to deepen my understanding of
distributed ledger technologies.

Summary: We introduce a method for blockchain maintainers to independently select
and remove blockchain transactions, while still being able to preserve the derivability of
certain ledger states. An implementation of the approach, which we also demonstrate, is
able to reduce the size of its blockchain by about 84.49%.

Author contributions: I wrote all parts of the paper, but received significant feedback
from Olov Schelén and Ulf Bodin. Also Jerker Delsing helped with suggestions regarding
its presentation. The extension of Hyperledger Fabric and benchmarking mentioned in
the paper were originally developed and gathered for my Master’s thesis [10]. However,
the paper adds to the original thesis by introducing more formalisms and a new discussion.

4.3 Paper B

Title: Syntactic Translation of Message Payloads Between At Least Partially Equivalent
Encodings

Authors: Emanuel Palm, Cristina Paniagua, Ulf Bodin, Olov Schelén

Presented at: 2019 IEEE International Conference on Industrial Technology (ICIT)

Motivation: I had made a distributed configuration system as part of a course on
the Arrowhead Framework [7] with translation capabilities, and it was deemed to be
interesting enough to be reworked into a paper. As the kind of translation has direct
relevance to the work of Derhamy et al. [6], it is presented as a complimentary extension of
his work. In particular, Derhamy et al. provide a system for message protocol translation,
while we introduce a system for message payload translation.

Summary: We present a theoretical method for translating message payloads in transit
between endpoints. The method involves representing and analyzing payload syntaxes
with the aim of identifying concrete translations that can be performed without risk of
syntactic data loss. While only able to translate payloads that are syntactically equivalent,
as defined in the paper, we see it as a first step towards syntactic transformational
translations and semantic translations.

Author contributions: I am the primary author of the second and third sections,
while Cristina Paniagua is the primary author of the first and the last. Even though the
paper covers what was my own original ideas, Cristina Paniagua, Ulf Bodin and Olov
Schelén all provided indispensable feedback, especially in terms of how to present the
work, understanding its utility and refining its formalisms.
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4.4 Paper C

Title: The Exchange Network: An Architecture for the Negotiation of Non-Repudiable
Token Exchanges

Authors: Emanuel Palm, Olov Schelén, Ulf Bodin, Richard Hedman

Accepted to: 2019 IEEE International Conference on Industrial Informatics (INDIN)

Motivation: We were tasked with digitizing a supply chain use case as part of the
Productive 4.0 project, and we concluded that its requirements would be best satisfied
by a negotiation framework. However, no such framework we could find was able provide
guarantees analogous to those of distributed ledger solutions, for which reason we decided
to produce our own architecture and implementation.

Summary: We present the Exchange Network, a general-purpose and implementation-
independent architecture for digital negotiation and non-repudiable exchanges of tokens,
which are symbolic representations of arbitrary values. We consider the implications
of implementing the architecture in three different ways, as well as demonstrating the
feasibility of the architecture by outlining our own implementation of it and also by
describing a supply-chain scenario inspired by one transportation process at Volvo Trucks.

Author contributions: I made the evaluated implementation and wrote Sections I, II,
III, IV and VI, while Ulf Bodin wrote Section V together with Richard Hedman and Olov
Schelen wrote Section VII. The ideas in the paper have been discussed and reevaluated so
many times that it is hard to know what ideas to attribute to whom. Generally, the basic
ideas are my own, while many improvements and insights came via the other authors.

4.5 Paper D

Title: Approaching Non-Disruptive Distributed Ledger Technologies

Authors: Emanuel Palm, Olov Schelén, Ulf Bodin

Submitted to: IEEE Access (Open Call)

Motivation: As we believe the particular implementation of the Exchange Network
architecture we present in Paper C provides a compelling design pattern for digitizing
business-to-business interactions, we decided to write a more extensive paper about it
and how it is less disruptive than the state-of-the-art.

Summary: We propose a design for distributed ledger solutions based on the Exchange
Network architecture that lacks distributed consensus algorithms and code-as-contracts,
both of which tend to make such solutions break with prevailing legal and business
practices. Concretely, we characterize the current cooperational paradigm, outline six
requirements of adherence, present our design, as well as considering both how our own
solution and how R3 Corda could fulfill our requirements.

Author contributions: I wrote all parts of the paper, but received significant feedback
from both Olov Schelén and Ulf Bodin. In particular, they gave indispensable comments
regarding the scope, aim and presentation of the paper.



28 Contributions

4.6 Other Work

During the period the four papers presented in this chapter were written, I was engaged
as a teacher’s assistant in three courses, implemented one and wrote documentation for
two experimental Arrowhead Framework [7] systems, completed five graduate courses,
presented on project and employee workshops, and went on many meetings. Several
collaborations on papers were planned, but none of them ended up coming to fruition
before this thesis was submitted.

Being a doctoral student is a work of many assignments, as well as a struggle to stay up
to date with relevant research subjects and coming up with new insights and solutions.
Many of the skills I have acquired did not leave any tangible artifacts. However, my
observation is that I have become a more proficient writer and presenter, as well as
having learned much about finding and assessing the quality of relevant research.



Chapter 5

Reflections

At this point, we have briefly described the state-of-the-art of distributed ledger
technologies, outlined our expectations on the future development on and impacts of the
technology, as well as how we ourselves have contributed to the advancement of the art.

5.1 Overview

Here, we present our answers to the research questions listed in Section 1.2.2, our views
on developments in our research area from an ethical perspective, as well as a description
of how we will continue to work with the technology in the future.

5.2 Conclusions

Q1 What possibilities exist for making distributed ledgers require less disk space, even if
assuming new data will be added indefinitely?

The primary strategy we investigate in Paper A is ledger transaction pruning. The
strategy becomes possible when transactions only need to be executed a limited and
well-known number of times, after which they can be removed. When this strategy can
be applied depends on whether the distributed ledger solution of concern relies on either
(1) a deterministic, or (2) a probabilistic consensus algorithm. While the former kind
of algorithm allows for executed transactions to be removed immediately, the latter one
requires waiting until the probability of having to unwind such executed transactions is
sufficiently low [37]. As the kind of algorithm can never be absolutely sure about whether
another, more probable, history of transactions will be presented, room must be left for
a sufficiently large number of its transactions, from the most recent and backwards, to
be replaced. Such replacements, or resets, require that replaced transactions have their
executions reversed before the new ones can be executed.
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In the case of it being relevant to be able to determine if a given transaction belongs
to a set of pruned, but authoritative, transactions, chains of hashes can be kept for the
purpose. However, if those hashes are kept indefinitely, pruning merely reduces the rate
of growth rather than limiting it.

Apart from pruning historic transactions deemed of less relevance, we believe there
could be plenty of room for compressing transactions using tailor-made compression
algorithms, which could substitute public keys, common scripts, as well as other data,
with less expansive placeholders. The strategy will never, however, be able to completely
limit ledger growth, as that will always require transactions to be fully removed.

Q2 What would be required to facilitate seamless integration between legacy systems and
distributed ledger technologies?

In Paper B, we propose a translation strategy where syntactically equivalent message
payloads are converted at the syntax level. The strategy requires (A) that specifications
be written for each syntax and (B) that a mapping between equivalent structures in each
syntax is created. However, this kind of translation is not seamless, even if combined with
the protocol translations capabilities we mention in our paper. Firstly, non-equivalent
payloads can not be translated and, secondly, translated payloads are not adapted to the
semantic expectations of their receivers. To mitigate this, we propose two extensions to
our model, a transformational and a semantic.

1. Transformational Translation. To be able to translate between any syntax
trees, not just equivalent such, a consistent and reversible syntax transformation
schema needs to be applied during translation. As a first step, such transformation
schemes could be defined via specifications written by humans.

2. Semantic Translation. In order for translation of messages between services not
designed to work together, the semantic gap between their message formats need
to be bridged, not the syntactic one. By this we mean that conversions between, for
example, CBOR and JSON will not be enough. Also the fields of the messages will
need to be adapted, rearranged or complemented. This requires a robust way of
reasoning about and describing the semantic expectations of each service of concern.
We believe that two such semantic descriptions, taken from whatever services are
to communicate with each other, could be used to generate a syntax transformation
schema. However, services include and require slightly different sets of data fields,
which may lead to syntax transformation schemes ending up being incomplete.
Completing them could require that data is queried from multiple services, or that
valid assumptions can be made about default values.

We believe the journey we started with Paper B has the potential to lead to truly
seamless translation in the future, but much work remains. The approach we propose
may end up requiring many kinds of specifications to be written in order to translate
properly, which may not seem very seamless. There may, however, exist ways to infer
many of those specifications, perhaps by parsing source code or analyzing messages.
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Q3 How can distributed ledger systems be fitted into the cooperational structures already
existing between industrial stakeholders?

Firstly, the collaborative needs of those industrial stakeholders must be clearly under-
stood. Secondly, those needs must be compared to the capabilities and limits of available
distributed ledger technologies. Thirdly, a solution must be identified that meets as many
as possible of those needs, and that is able to integrate with other systems and processes
that can meet the needs that cannot be directly addressed.

1. The collaborative needs of the industry. As part of Paper D, we outline a
characterization of contractual cooperation and turn it into a list of six relevant
requirements. Those requirements are being able to (1) prove what has been agreed
upon, (2) renegotiate terms when circumstances change, (3) handle deviations in
a court of law or via some other adjudicator, (4) interpret terms consistently, (5)
identify other parties reliably, as well as (6) be able to conceal agreements and
interactions from competitors.

2. Relevant capabilities and limits of distributed ledger technologies. As
we consider in more detail in Chapter 2, a distributed ledger solution is a system
where two or more parties maintain and replicate a ledger of transactions, where
each added transaction is verified to be correct by a regulation framework. When all
the transactions are executed, they produce a state data structure from which the
rights and obligations of the system users can be determined. How the capabilities
of these solutions tend to match the cooperational requirements we listed above is
considered at great length in Paper D. In particular, we know of no solution that
directly facilitates contract renegotiation or provides a proven system of integration
with courts of law or other adjudicators. While some distributed ledger solutions
are able to substitute trusted third parties with automated voting procedures, such
substitutes are typically very constrained in terms of what they can consider as
evidence, as well as the power they have to compel misbehaving users to make
reparations. Also, only some solutions allow for contracts and transactions to be
revealed exclusively to those of immediate concern.

3. An adequately useful solution. In both of Papers C and D, we outline an
architecture and implementation strategies that can be used to build industrial
collaboration systems. In particular, we propose that many common scenarios are
most adequately served by a consensus procedure akin to that of R3 Corda [33],
which provides good opportunity for preserving privacy, as well as by replacing
the executable-code-as-contracts model, which is used by virtually all distributed
ledger solutions, with a model in which digital ownerships are negotiated about and
exchanged. We argue that a system about defining and exchanging tokens, with
their ownership and transfer implications defined in conventional legal language,
provides a lower barrier to adoption by legal institutions and experts than does
systems about programmatic specifications and finite state machine transitions.
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5.3 Ethical Considerations

No research is without its implications on wider society, and that especially if it affects
resource production and distribution, trading and finance, or other areas of geopolitical
significance. When talking about distributed ledger technologies, there are two themes
we believe especially relevant to discuss from an ethical perspective, which are (1) inflated
expectations on the technology and (2) its potential to disrupt societal power structures.
We discuss them here in turn.

5.3.1 Inflated Expectations

For anyone who has followed the discussion around and evolution of blockchains during
the last years, it will unlikely come as a surprise that the technology shows signs of being
subject of a hype. In other words, the expectations on the technology [9] do not match
the capabilities it has proven to have [62]. While large interest in a technology creates
opportunities for it to be further developed, via funding of scientific projects and other
initiatives, it is our observation that it also inflates the expectations of those paying for,
leading, providing feedback and following up on those initiatives.

Perhaps contrary to intuition, this can create an incentive for those tasked with
developing the technology to focus their work on non-essential improvements. If the
researchers or developers insist that the technology is far less capable than advertised,
they compromise the prestige and agendas of those investing in it, as well as risking
conflict with others better served by a status quo. If, on the other hand, the researchers
or developers can show that they have been able to improve some aspect of the technology,
even if it has little real-world consequence, they add to the prestige and momentum of
their funders. At the same time, however, they also perpetuate the idea of the inflated
expectations being valid.

Even though this may come as no surprise to those with experience with financing
and leading research projects, we would like to emphasize the importance of creating and
upholding cultures where projects are allowed to fail and research outcomes may be very
different from what was initially expected.

5.3.2 Disruption of Power Structures

In Chapter 3, we considered how distributed ledger technologies, given the right kinds of
improvements, could disrupt both financial and legal institutions. This is a historically
interesting kind of disruption, as both of the financial and legal functions are integral
to how modern governments control their economies. We suspect that if governments
cannot effectively make the transition to the new distributed ledger paradigm, when and
if it does usher in, they risk being out-competed by private actors providing the same
kinds of services. We make no judgement regarding whether such a development would
be good or bad, but note that it could lead significant societal turmoil if governments
neither expect or welcome such developments.
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5.4 Future Work

While some potential ideas for future efforts have already been presented in this chapter,
we here reiterate a few of them, as well as presenting new ones. We categorize the ideas
according to the three perspectives we first presented in Chapter 1.

1. Performance. While we have presented a method for pruning transactions to
reduce disk space, we see potential for other methods for further improvements.
For example, in cases where it is relevant to be able to determine whether given
transactions were part of a ledger, but has been pruned, Merkle trees may be
used as suggested in [1]. However, in cases were some degree of inaccuracy is
acceptable, there could be room for instead using something like bloom filters [63],
which would further reduce disk requirements. Other promising research topics
could include extending our selective transaction pruning approach to more kinds
of ledgers, handle more transaction selection algorithms, or operate more efficiently
in terms of reduced execution time, compute power, electricity or hard drive tare.

2. Interoperability. In Section 5.2.Q2, we describe two extensions to the translation
model we present in Paper B, one transformational and one semantic. As those
extensions require certain specifications to be written, it could become interesting to
investigate whether those specifications could be generated automatically. Another
relevant line of research could be to determine if code could be generated from
our specifications that could be deployed directly on communicating devices, which
would remove the need for an intercepting translation service.

3. Integration. In Papers C and D, we describe the four different components of
our Exchange Network architecture. We believe there are several things that could
be done to make the architecture automate more aspects of managing contractual
relationships. For example, tracking, analyzing and sharing data about what other
parties can be trusted, perhaps as suggested in [64] [65], automatically sharing
contractual definitions and other data as required by accepted agreements, buying
and selling private data, methods for using conventional contracts in Exchange
Networks, or higher-level negotiation, such as about how to negotiate, about the
details of a contract, or about contractual exceptions.

While there are plenty of subjects that could be investigated in the future, what
we will pursue in the future will largely depend on the wants and needs of whatever
project will fund our research. It is not inconceivable that a line of questions we haven’t
considered until this point will be the primary subject of our coming efforts.
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Selective Blockchain Transaction Pruning

and State Derivability

Emanuel Palm, Olov Schelén, Ulf Bodin

Abstract

Distributed ledger technologies, such as blockchain systems, have in recent years emerged
as promising platforms for machine-to-machine commerce and other forms of multi-
stakeholder applications. However, despite the potential demonstrated by projects such
as Bitcoin, Ethereum, and Hyperledger Fabric, the disk space typically required to host a
copy of a ledger may be prohibitively large for many categories of devices. In this paper,
we introduce an approach for reducing ledger size in blockchain systems, based on ar-
bitrary pruning predicate functions, allowing each network participant to independently
select and remove any already applied transactions. We also show that if only pruning
certain ledger transactions, the ability to derive an unmodified state data structure from
the remaining transactions is maintained. The approach is validated through a supply
chain use case utilizing a modified version of Hyperledger Fabric, in which ledger size is
reduced by about 84.49% via selective transaction pruning.

1 Introduction

The release of Bitcoin at the end of 2008 [1] marked the beginning of a major techno-
logical trend, which has grown to encompass a plethora of derivatives and alternatives
[2] [3]. These systems, commonly referred to as Distributed Ledger Technologies (DLTs),
remove the need for using trusted middle-men by instead relying on networks of voting
computers, sharing immutable histories of transactions that each participant can verify
to be correct. Bitcoin famously hosts a distributed electronic cash platform where there
is no central authority [1], and many other use cases have since been proposed. These in-
clude political election systems [4], self-driving cars buying their own fuel [2], and smart
factory [5] machines autonomously buying and selling material and goods within and
between factory plants. Use cases typically have in common that they require a shared
notion of identity, ownership, and transfer of ownership within a network of machines
controlled by different stakeholders, each with its own incentive to maintain the system.

Although distributed ledgers could be a key enabler for emergent technologies such as
autonomous machine-to-machine commerce, the storage space typically needed to host a
ledger might be prohibitively large for many categories of devices. At the time of writing,
the Bitcoin blockchain ledger required about 134 gigabytes of memory, growing steadily
at a pace of about 52 gigabytes per year [6], while the ledger of Ethereum [7], another
popular blockchain system, required almost 395 gigabytes of memory [8]. Both of these

45



46 Paper A

systems are permissionless (i.e. open to public participation) meaning that any accepted
activity by any participant will likely lead to an increase of ledger size. On the other hand,
permissioned systems, such as R3 Corda [9], Quorum [10], or Hyperledger Fabric [11],
assume that ledgers only be replicated within closed groups of known participants. This
may lead to ledgers being smaller, but could also mean that many ledgers are maintained
at the same time. In [12], a system is presented where each network stakeholder can
maintain private blockchains with any subsets of other network participants in order to
protect sensitive interactions.

The problem of ever-growing distributed ledgers is already well-known. Bitcoin and
Ethereum allow the use of light clients [1] [7] that only carry limited ledger and state
subsets, but are unable to participate in the consensus process. At the cost of more disk
usage, Bitcoin Core [13] and related efforts [14] [15] [16] retain the ability to validate
transactions by first constructing a complete state data structure, and then pruning all
but the n last ledger blocks. These approaches are, however, lacking in that they (1)
do not facilitate fine-grained control of what transactions to keep, and (2) do not allow
useful data structures to be derived from partially pruned blocks.

In this paper, a pruning strategy applied to Hyperledger Fabric [17] version 0.6 is
presented. The strategy is similar to the disk space reclaiming procedure proposed in the
original Bitcoin paper [1], with the significant difference that transactions of interest can
be left unpruned, and the ability to rebuild a valid state data structure can be maintained
if certain conditions apply. Pruning is regulated through the use of arbitrary predicate
functions, which can be specified such that only transactions cancelling each other out,
or are fully superseded by later trancations, are deleted. For example, certain money
transfers may sum up to zero, or, an ownership statement may fully replace one or more
previous such. We show that if only removing certain transactions with the mentioned
properties, the state data structures derivable from any blocks of interest can be made
to remain unaltered.

The contributions of significance presented in this paper are: (1) A strategy for
pruning blockchains relying on arbitrary predicate functions for transaction selection.
(2) The identifying and outlining of significant implications of pruning, including how it
affects expected memory growth and its impact on being able to build unmodified state
data structures from pruned blocks. And finally, (3) a supply chain use case facilitated
by a modified version of Hyperledger Fabric [17] version 0.6 that serves to validate the
presented approach and to exemplify its impact on ledger storage requirements.

The paper is organized as follows: Section 2 describes related efforts in more detail.
Section 3 outlines a general strategy for selective blockchain transaction pruning, as
well as methods for predicting blockchain growth. Section 4 presents a modification to
Hyperledger Fabric making it able to prune its ledger, together with a use case and
benchmark results. Section 5 discusses related topics and suggestions for future research.
Finally, Section 6 concludes the paper.
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2 Related Work

In the original Bitcoin white paper [1], two approaches for reducing ledger size were
presented, namely Reclaiming Disk Space (RDS) and Simplified Payment Verification
(SPV). Even though other approaches have been developed, such as for Bitcoin Core
[13] or Cryptonite [14], all such known to the authors are generally similar to those
originally suggested. For this reason, the names of the original approaches are used here
to represent the current state-of-the-art of ledger size reduction.

2.1 Reclaiming Disk Space

The key idea of the RDS approach is to remove some transactions, from the oldest and
onward, after applying them to a state data structure [1]. To avoid losing the ability to
verify that given blocks or transactions are part of the pruned past, block hashes and
Merkle Tree roots [18] may be saved.

Systems relying on probabilistic consensus [19] are required to allow already accepted
blocks of transactions to be replaced if a chain of such with sufficient weight is presented
[1]. It is, therefore, needful to refrain from pruning the n most recent blocks. n is chosen
to represent a weight (e.g. proof-of-work [1]) that is large enough to avoid the practical
possibility for an m > n block reorganization to occur, where m is the number of known
main blocks that are superseded by a reorganization. An m > n reorganization leads
to a given network participant no longer being able to assume its state to be relevant,
meaning the state must be acquired again from its network.

While this approach leaves room for keeping transactions of interest, no strategy for
choosing such is described in any work known to the authors. Our solution, on the other
hand, gives fine-grained control over what transactions to keep, which we also show can be
used to maintain particular system properties, such as being able to rebuild unmodified
state data structures from partially pruned blocks.

2.2 Simplified Payment Verification

Using SPV means that a network participant gives up the ability to verify the validity
of new transactions by itself, and instead delegates that responsibility to other nodes of
its network [1]. Giving this ability up means that only the portions of a blockchain that
are of interest to the owner of a given SPV node need to be saved.

In Bitcoin Core [13], SPV nodes download all block headers, but only transactions of
interest. As block headers contain Merkle Tree [18] root hashes, any retrieved transaction
can be proved to belong to any of the known block headers. Transactions and blocks
are requested by providing a number of regular nodes with filters [20], which are used to
decide what transactions to relay. Given that a majority of the connected regular nodes
convey all desired transactions, a valid partial state can be built from them. Transactions
of interest can be selected up to the granularity of instances of addresses, keys or script
hashes within individual transactions.
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Requesting other nodes to send certain transactions is, however, not the same as leav-
ing out transactions while pruning. Also, the procedure facilitated by Bitcoin Core does
not allow filters to consider any particular state of the data structure built by applying all
transactions, only the transactions themselves. Our solution allows arbitrary information
to be considered while determining if an individual transaction is to be pruned, such as
derived states, blocks, significant timestamps, or any other data of interest. Even though
it could require more storage space, our solution does not require giving up the ability
to participate in the consensus process.

2.3 Other Approaches

Not all distributed ledger systems store their transactions in blocks, or even in a sequential
history. Systems such as Swirlds [21], IOTA [22], or R3 Corda [9] use graph-like ledgers
rather than chains of blocks, which could yield significantly different pruning implications.
Nodes in R3 Corda, for example, can allegedly prune transactions of liquid asset transfers
(e.g. money transfers) by requesting an asset issuer to re-issue a given asset, effectively
aggregating relevant previous transactions into a single new transaction. Whether or not
the pruning strategy presented in this paper could be applied to these graph-like ledgers
is not considered, but is left as an open topic for future research.

3 Selective Transaction Pruning

Selective transaction pruning is to be understood as the practice of blockchain network
participants independently removing transactions that neither contribute with impor-
tant system properties or are of particular interest. An important system property could
be protection against not having any main blocks after a reorganization, while interest
depends on the information needs of a given network participant. In a supply chain
scenario, transactions related to lost, damaged or late goods could be particularly in-
teresting to shipping companies, terminal stations, etc, as they might be needed when
negotiating with partners or insurance agencies. Computers on delivery trucks or con-
tainer ships may only find it relevant to carry transactions related to transported goods,
while statisticians may want to refrain from pruning anything from their servers to allow
for future data analysis.

In order to clarify what general properties are maintained by a blockchain, and
how these are changed as transactions are pruned, this section begins with a general
anatomy of the blockchain data structure. It is followed by descriptions of how signif-
icant blockchain properties may be maintained, the definition of a selective transaction
pruning algorithm, and a description of how the presented algorithm can be used to
only remove transactions that cancel each other out or have been superseded. Finally, a
method for predicting blockchain memory requirements is presented.
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Table 1: Significant parts of a general pruned blockchain.

Name F* (Invariant) Description

Indicators

Block Height h (1 ≤ h) Authoritative blocks part of a blockchain. h = 1 implies
the existence of only a genesis block.

Block Position i (1 ≤ i ≤ h) The index of the ith block. The genesis block is repre-
sented by i = 1.

Transaction Position j (1 ≤ j ≤ ui) The jth transaction of the ith transactions set, contain-
ing ui transactions.

Reorganization Height m (1 ≤ m ≤ h) Number of main blocks superseded by a reorganization.

Guard Height n (0 ≤ n ≤ h) Number of consequtive blocks, beginning with the most
recent, used to protect against reorganizations.

Primitives

Block bi The ith block.

Header Hi Header of ith block, containing block predecessor hash,
checksum of block transactions, etc.

Transaction ti,j The jth event description out of ui belonging to the ith
block.

Transaction Set ti,∗ All transactions belonging to the ith block.

State si A data structure built by applying every ti,j ∈ ti,∗ ∈ bi ∈
{b1, . . . , bi}.

Significant Blocks

Genesis Block b1 The initial block.

Current Block bh The most recent block of a currently authoritative chain
of blocks.

Main Blocks b∗ All blocks, pruned or not, part of a currently authorita-
tive chain of blocks.

Guard Blocks b∗,guard n consequtive blocks, beginning with the most recent,
used to protect against reorganizations.

Free Blocks b∗,free h − n blocks thay may or may not contain pruned
transactions.

Significant States

Current State sh The hth state, representing the application of all
blockchain transactions.

Derivable State s′i Underived si that could be constructed from only local
data.

Retrievable State s′′i Underived si that might be constructible from network
peer data.

*F = Formal name.
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3.1 Blockchain Anatomy

Primitives

A blockchain is an ordered sequence of transactions grouped into blocks. Each transaction
describes a change to a state, which could be any kind of data structure, such as a table
of monetary accounts or a key/value store. Each block includes a header, which contains
enough information to identify any preceding blocks and to determine if these blocks are
unmodified. Concretely, the header could include the hash of the preceding block and a
hash of the transactions included in the block itself (e.g., [1] [7] [14]).

Significant Blocks

Every blockchain contain two generally significant blocks, the genesis block and the cur-
rent block. The genesis block is the first block in its chain, and does sometimes contain
special information that dictates how a blockchain can be used. For example, Ethereum
uses the genesis block to set an initial mining difficulty and can use it to preallocate
funds to given accounts [7]. The current block is the most recent block in its chain,
and is typically special since it must have a derived state, or the given node owning the
block will not be able to participate in the process of validating new transactions. If a
blockchain is part of a system relying on probabilistic consensus [19], such as Bitcoin [1]
or Ethereum [7], room must be given for block reorganizations. The currently authorita-
tive chain of blocks is typically referred to as main blocks. If a system with probabilistic
consensus supports transaction pruning, the n most recent blocks may serve as guard
blocks, meaning they act as protecting against m > n reorganizations by not containing
pruned transactions, where m is the number of main blocks superseded by the reorgani-
zation. Any block not being a guard is a free block, and could be pruned if desired by
its owner. Figure 1 depicts a blockchain with n guard blocks and h − n free blocks. In
blockchain systems using non-probabilistic consensus algorithms (e.g. PBFT [23]), such
as Quorum [10] or Hyperledger Fabric [11], it becomes unnecessary to make these dis-
tinctions. Technically, all blocks are both authoritative and free, as they cannot possibly
be superseded by reorganizations.

Significant States

A state data structure, or state, is constructed by applying all transactions in a given
block and all of its preceding blocks. Each block could be considered having an associated
state, even if that state does not currently exist. Currently existing states are here
referred to as being derived, while non-existing states are considered being either derivable
or retrievable. The difference in being derivable or retrievable lies in whether or not
enough information is had by a network participant to construct a given state, or if
that information has to be acquired from other participants. It becomes relevant to talk
about retrievable states when a given blockchain system supports pruning, as removing
transactions could imply that some states seize to be derivable. Lastly, the state derived
from the current block is referred to as the current state.
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Table 2: Logical descriptions of significant blockchain properties. See Table 1 for definitions.

Expression Description

Block Predicates

Unmodified(bi) ⇐= The block bi is known to be unmodified if either
bi+1 can be proved to be the successor of bi, or if
the order and state of the transactions in bi can
be proved to be unmodified.

Successor(bi+1, bi) ∨ Unmodified(ti,∗)

Successor(bi, bi−1) ⇐= The block bi is provably the successor of bi−1 if
the hash of the predecessor bi−1 is equal to the
predecessor field of the header of bi.

hash(bi−1) = Hi,predecessor

V alid(bi) ⇐= apply(si−1; ti,∗) = si The block bi is provably valid if applying all of its
transactions to the derived state of the preceding
block yields a valid state si.

Transaction Predicates

Unmodified(ti,j) ⇐= The transaction ti,j is provably the jth
transaction of the block bi if the hash of all block
transactions and relevant block header fields
(here assumed to be all fields but the checksum)
equals the checksum field of the header.

Unmodified(ti,∗) ⇐=
hash(ti,∗ ·Hi,{checksum) = Hi,checksum

V alid(ti,j) ⇐= apply(si−1; ti,j) 6= ∅ The transaction ti,j is provably valid if applying
it to the derived state of its preceding block yields
any valid state.

State Predicates

Derivable(s′i) ⇐= si can be constructed if all transactions in bi can
be applied to the state derived from the block
preceding it, or if the transactions in the
successor block bi+1 can be used to undo their
changes to the successor state si+1.

apply(si−1; ti,∗) = si ∨
unwind(si+1; ti+1,∗) = si

Retrievable(s′′i ) The state si can be retrieved if either blocks,
state and blocks, or just the state in question can
be retrieved as needed from other network par-
ticipants, and whatever data is acquired can be
trusted to be correct.

Auxiliary Functions

apply(si−1; ti,∗) =

{
si, if V alid(si)

∅, otherwise

Represents the application of the given set of
transactions ti,∗, where each transaction is en-
sured not to modify the given state si−1 such that
it describes a non-permitted outcome.

hash(x) = y A function that takes whatever arguments given,
combines them and turns them into a checksum.
· denotes an argument combination function.

unwind(si; ti,∗) = si−1 Represents the undoing of the modifications made
to the given state si by the given set of transac-
tions ti,∗.
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...

...

Figure 1: A blockchain of h blocks. The latest n blocks serve as guard against reorganizations.
See Table 1 for definitions.

3.2 Pruning and Property Changes

Removing data from a blockchain may free up computer memory, but it could also lead to
other property changes. Table 2 lists properties that may be maintained by a blockchain
as logical predicates. It should be noted when reviewing the table that pruned blocks
could lead to the loss of those properties.

A Property Preserving Hashing Procedure

To be able to prove that a block is unmodified, or that one particular block is the successor
of another, requires the use of a hashing function hash(x) = y, as shown in Table 2. Since
the hashing function is expected to change its output y with the slightest alteration of
x, pruning a block will normally lead to its hash changing, consequently making those
properties unprovable. This could, however, be mitigated by using a hashing procedure
that accounts for missing transactions. One such procedure combines stored hashes of
pruned transactions with calculated hashes of the remaining such. Given that · is an
arbitrary combination operator, and the definitions in Table 2, the procedure could be
defined formally as:

hi = hash(Hi,{checksum · f(ti,∗))

f(ti,∗) = g(ti,1) · g(ti,2) · . . . · g(ti,u)

g(ti,j) =

{
ti,j,saved hash, if Pruned(ti,j)

hash(ti,j), otherwise

(1)
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The same procedure would be used both to prove a given block is unmodified, and
that it is the predecessor of its successor. An alternative procedure using Merkle trees
[18] [1] could likely be used to reduce the number of stored hashes, but its definition is
left as a topic for future research.

3.3 Selective Pruning Algorithm

The proposed selective pruning algorithm, illustrated in Figure 2, operates in three
phases, namely preparation, marking and, lastly, sweeping. The reader should note
that the algorithm is described in terms of these phases not because they are strictly
required to occur in sequence, but rather because it makes it straightforward to describe
the algorithm.

p

I II III
Prepare Mark Sweep

Figure 2: The three phases of the selective pruning algorithm.

I. Preparation

The objective of the preparation phase is to identify the set of blocks that will be pruned p,
and to identify and assemble any data d that will be required when considering individual
transactions for pruning. That data could include one or more state data structures,
which may have to be derived to become available. It could also include actual blocks,
or external data not available through the pruned blockchain.
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II. Marking

After p and d have been identified and assembled, every transaction ti,j ∈ bi ∈ p is tested
using a predicate function T , provided by the initiator of the pruning algorithm. T must
satisfy:

T : 〈ti,j; d〉 7→ {true, false} (2)

The position (i, j) of each transaction where T yielded true is stored in a set R, which
keeps track of all transactions pending removal. An example of a function satisfying T is
given in Section 4.3. The formulation and analysis of other T -functions is left as a topic
for future research.

III. Sweeping

Lastly, each transaction identified by R is removed. Additional measures may be required
to ensure that memory is practically freed when the phase is over, such as compacting
blocks to make room for additional such.

3.4 Selective Pruning and Maintaining Derivability

The blockchain properties presented in Section 3.2 and Table 2 imply that removing any
transaction from a block leads to the state associated with that block to no longer be
derivable, at least in its original form. There are, however, special cases when this is not
true. Transactions may be categorized as being generally significant, universally insignif-
icant or retroactively insignificant in relation to state derivability, where transactions in
the latter two categorized may be pruned subject to certain conditions. The categories
are defined below.

Significant Transactions

If the removal of a particular transaction results in the state associated with its block,
or any succeeding block, no longer being derivable in its original form, the transaction
in question is to be regarded as generally significant to state derivability. Given the
definitions in Tables 1 and 2, it may be expressed formally as:

Significant(ti,j) ⇐= (Removed(ti,j) =⇒

∃s′x (x ≥ i ∧ ¬Derivable(s′x)))
(3)

For example, consider transaction t1,1 in Figure 3. If it is removed, then [a : 1] would
no longer be part of s′1, and as a consequence [a : 11] would no longer be associated with
s′2. As neither s′1 or s′2 would be derivable in their original forms, the transaction cannot
be removed without impacting the derivability of any state.
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Universally Insignificant Transactions

If removing one or more associated transactions in the same block does not lead to the
state associated with the block becoming different, then those transactions are together
considerable as universally insignificant to state derivability. As each state builds upon
its predecessor state, if a set of transaction removed from the same block does not effect
the state derived from that block, no subsequent state is affected either. Given the
definitions in Tables 1 and 2, and that ti,J ⊂ ti,∗ ∈ bi, it may be described formally as:

Insignificantu(ti,J) ⇐= (Removed(ti,J) =⇒ Derivable(s′i)) (4)

An example can be taken from Figure 3, where t2,3 has no impact on c, as 3 (mod 5) =
3. If t2,3 is removed, then s′2 remains unchanged, making the transaction universally
insignificant to state derivability. To give an example where ti,J contains more than one
transaction, consider b3 in Figure 3. The block contains add(a, 5), add(a, 3) and sub(a, 8),
which if all applied leads to no change of a. As these transactions effectively cancel each
other out, they become insignificant only if considered together.

s'

s'

set(b, 20)

mod(c, 5)

add(a, 10)t2,1

t2,2

t2,3
c:  3
b: 20
a: 11

2

c: 3
b: 2
a: 1

1

b2

set(b, 2)

set(c, 3)

set(a, 1)t1,1

t1,2

t1,3

b1

add(a, 3)

add(a, 5)

sub(a, 8)t3,1

t3,2

t3,3
c:  3
b: 20
a: 11

b3 s'3

Figure 3: A blockchain of 3 blocks, where each block has a derivable state. Transactions set or
modify arbitrary integers associated with alphabetic keys. See Table 1 for definitions.

Retroactively Insignificant Transactions

Given the existence of a set of states that no longer need to be derivable R′, if removing
one or more associated transactions from any blocks directly related to any member of
R′ does not lead to any state not in R′ becoming different, then those transactions are
together considerable as being retroactively insignificant to state derivability. Considering
the definitions in Tables 1 and 2, and that ti,J ⊂ ti,∗ ∈ bi, it may be defined as:

Insignificantr(ti,J , R
′) ⇐= (Removed(ti,J) =⇒

∀s′x (x < i ∨ s′x ∈ R′ ∨ Derivable(s′x)))
(5)
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Consider transaction t1,2 in Figure 3. If removed, then s′1 ceases to be derivable in
its original form, but s′2 remains unaltered. The reason for this is that t1,2 is completely
superseded by t2,2, which overwrites the same b first set by t1,2. Therefore, if s′1 ∈ R′,
then t1,2 can be removed.

3.5 Predicting Blockchain Growth

Given a blockchain of h blocks, where the mean size of a block is µb, the mean size of a
block header is µH , the mean size of a transaction is µt, the mean number of transactions
per block is µu and ε represents any sources of error, then the size S of a blockchain may
be defined as:

S = hµb + ε

µb = µH + µtµu + ε
(6)

If the mean block size is not known and cannot be estimated, Equation 6 may also
be formulated with µb substituted as:

S = h(µH + µtµu) + ε (7)

It should be noted that any of the variables in Equation 6 could be expressed as
functions over one or more variables, such as time. Typical sources of error ε could
include platform or storage media restrictions, such as page or block sizes, whether or
not blocks are stored in multiple file system files, etc.

Example 1

Some blockchain currently consist of 40000 blocks, and is expected to grow with a rate of
120 blocks per day, where the mean size of a block is known to be constant at 0.30 MB.
Given that d is the number of days elapsed since the current time, h = (40 000 + 120d),
and ε = 0, then its size in MB is:

S = hµb + ε = (40 000 + 120d)0.30 + 0 = 12 000 + 36d

Accounting for Pruned Blocks

Given that n is the number of unpruned blocks in some blockchain, that µp(b), µp(H), µp(t)

and µp(u) are the mean sizes of pruned blocks, pruned headers, pruned transactions and
average number of pruned transactions per block, respectively, then pruned blockchain
size S̃ could be calculated using:

S̃ = nµb + (h− n)µp(b) + ε | h ≥ n

µb = µH + µtµu + ε

µp(b) = µp(H) + µt(µu − µp(u)) + µp(t)µp(u) + ε

(8)
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Example 2

A blockchain is expected to grow with a pace of 1 block every two minutes, or about
262800 block per year. The mean sizes of both unpruned and pruned blocks are known
to be constant at 2.30 MB and 0.50 MB, respectively. Equation 8 is used to calculate
the expected size of the blockchain after 19 years. Given that the last n = 1 000 blocks
will need to be kept unpruned, h = 262 800 · 19, and ε = 0, then the blockchain size in
MB is expected to be:

S̃ = nµb + (h− n)µp(b) + ε

= 1 000 · 2.30 + (262 800 · 19− 1000)0.5 + 0

= 2 498 400

If, on the other hand, the maintainers of the blockchain would have refrained from
pruning any blocks, its size in MB would have been:

S = hµb + ε

= (262 800 · 19)2.30 + 0

= 11 484 360

The size reduction gained from pruning is in this scenario 1−(2 498 400÷11 484 360) ≈
78.25%.

Blockchain Growth Linearity

Pruning a blockchain may yield significant savings in storage space requirements, but
can only be used to limit the size of a blockchain to a desired threshold if the mean
size of a pruned block µp(b) can be or approaches zero. Figure 4 depicts five different
growth trajectories, calculated using Equation 8, for blockchains where pruning leads to
different changes in mean block size. Only one trajectory, where µp(b) = 0, represents a
fixed storage requirement relative to the number of unpruned blocks n. Hence, blockchain
growth may be assumed to always be linear over time, pruning or not, unless the size of a
pruned block is effectively zero. Whether or not it is reasonable to remove entire blocks,
including their headers, would depend on the expectation that any of the information
contained in a block will be useful in the future.
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Figure 4: The impact of pruning on blockchain size over time. µb and µp(b) are assumed to be
constants. Each line represents a growing blockchain where n blocks are kept unpruned.

4 Selective Transaction Pruning in Hyperledger Fabric

This section presents the application of the theory presented in Section 3 on Hyperledger
Fabric. It begins with a brief overview of the system for readers not already familiar with
it and continues with a presentation of the modifications made to it for it to support
selective transaction pruning. Finally, it ends with a description of an asset-delivery
use case followed by benchmark results, which are presented to verify that selective
transaction pruning is possible and yields predictable results.

4.1 Overview of Hyperledger Fabric

Hyperleger Fabric [11] is a blockchain system developed and maintained by Hyperledger
[24], a project hosted by the Linux Foundation aimed at creating and maintaining open
source blockchain systems for enterprise applications. The system is significantly per-
missioned and relies on non-probabilistic consensus. The transactions of its blockchain
describe invocations of chaincode functions, where a chaincode is a form of containerized
application serving as a smart contract [25]. Each valid chaincode invocation may result
in the key/value store associated with the system running the chaincode being updated.

4.2 The Pruning Extension

Hyperledger Fabric was significantly extended to support selective transaction pruning
and blockchain size analysis. To allow the abilities in Table 2 associated with hashing to
be preserved to some extent, the block hashing procedure was also modified. The remain-
der of this subsection is dedicated to outlining how these features were implemented.
The reader should, however, first note that when the presented features were developed,
the more stable version of Fabric was deemed to be version 0.6 [17]. This means that
details mentioned below may not be true for more recent versions of Fabric.
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Selective Transaction Pruning

The pruning algorithm described in Section 3.3 requires a provided predicate function for
the purpose of determining which transactions to prune. Hyperledger Fabric allows its
blockchain to be modified only via chaincodes, which are deployed independently by the
maintainers of the nodes participating in the transaction validation process. Chaincodes
do only have to be functionally equivalent for the system to operate, meaning that each
maintainer could use its own implementation. To allow each participant to also provide
its own pruning predicate function, the chaincode messaging protocol and procedures
were extended for the purpose. If provided, the predicate function is called exclusively
with transactions generated or validated using the same chaincode, meaning there is
no way for one pruning predicate function to decide whether transactions generated by
other chaincodes are to be removed. When invoked via an added REST [26] endpoint,
the implemented pruning procedure proceeds as follows:

I. Prepare: An effective read-only copy of the most recently assembled state data
structure is created and used as d. All blocks, from the most recent to the oldest,
used to derive the copied state are used as p.

II. Mark: All non-pruned transactions in p are provided together with d, one at
a time, to the pruning predicate function associated with the chaincodes first
used to generate them, if such exists. Each transaction provided to a pruning
predicate function returning true is marked for pruning.

III. Sweep: Each block is deserialized. Marked transactions are hashed, have their
contents removed, their types changed to PRUNED, and their metadata fields set
to their hashes. Finally, the block in question is serialized and saved over its
previous version. When no more blocks to prune remain, d is removed.

Two things should be noted by the reader about the presented selective pruning
procedure. Firstly, Hyperledger Fabric uses a non-probabilistic consensus algorithm.
Therefore, no transactions already used to construct a state data structure are techni-
cally required to participate in the validation of new blocks (see Section 3.1). Secondly,
as pruning predicate functions have arbitrary implementations, guarantees about being
able to derive useful state data structures from pruned blocks depend on those imple-
mentations. An example of such an implementation is given in Section 4.3.
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Blockchain Size Analysis

Measuring the impact of pruning requires a way for block size metrics to be collected.
As blocks are stored in serialized form in a database, Hyperledger Fabric was extended
to gather block byte sizes by iterating through blocks and checking the number of bytes
used to represent them. In order to also measure the sizes of headers and transactions,
blocks are deserialized and their transactions serialized and measured, one by one. To
calculate the size of each block header, the size sum of the transactions belonging to the
same block is subtracted from the size of the entire block. Given that Si,b is the byte
size of the ith block, Si,t,∗ is the byte size of the transactions of the same block, ui is the
number of transactions it contains, Si,H is the block header byte size, and, finally, ψ(x)
is a function that serializes and determines the byte size of x, the measurements may be
expressed formally as:

Si,b =ψ(bi)

Si,t,∗ =

ui∑
j=1

ψ(ti,j)

Si,H =Si,b − Si,t,∗

(9)

As Google Protocol Buffers [27] is used as serialization format, there is some byte
overhead associated with designating consecutive transactions as members of a collection.
This collection overhead varies with the number of transactions in the collection and
affects calculated sizes of block headers. To make the collected metrics accessible from
outside Hyperledger Fabric, existing REST [26] endpoints were modified such that blocks
and transactions are served together with information about their sizes. It should be
noted that the reported sizes do not account for any other storage space than that of the
blocks themselves. Database indexes and other overhead is not accounted for.

Property Preserving Hashing Procedure

The Block hashing procedure used by Hyperledger Fabric only entails feeding a serialized
block to a hash function. If a block is pruned, its serialized form becomes different,
which means that it yields a new output if provided again to the hashing procedure.
Pruned blocks cannot be proved to be unmodified or to be the predecessors of their
successors unless the hashing procedure is modified as described in Section 3.2. As it was
assumed to be meaningful to retain these properties even if transactions are pruned, the
procedure described by Equation 1 was implemented. Pruned transactions are replaced
with only their hashes and a PRUNED type indicator. As Hyperledger Fabric blocks hold
a nonHashData header field, the implementation ignores this field.
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4.3 Use Case: Asset Delivery Network

One proposed use case for systems such as Hyperledger Fabric is supply chain manage-
ment [12]. Supply chains may cross political, geographical or cultural boundaries, and
could require the cooperation of stakeholders with conflicting interests. Blockchain tech-
nology could be a way to manage fairness where trusted middle-men or other kinds of
arbiters are hard to agree on. To verify that selective transaction pruning could be used
to reduce ledger size and preserve significant transactions, a naive supply chain scenario
was formulated with the intent of reflecting the interactions of different stakeholders in
an asset delivery network. No attempt is made to account for subjects of contention,
such as false claims about delivery times or asset locations. The scenario, depicted in
Figure 5, includes 18 sites connected via unidirectional routes, through which assets are
delivered via different kinds of media, such as shipping or trucking. All significant de-
livery events are registered with a member of a Hyperledger Fabric cluster through a
chaincode written for the purpose.

Figure 5: A delivery network of 5 warehouses, 8 distribution centers and 5 delivery points
connected via 33 unidirectional routes, allowing assets to be transferred via 387 different paths.

Algorithm 1 Pruning predicate function associated with use case chaincode. The func-
tion only returns true if transaction affects key/value pairs not present in state. This
will be the case only if state represents a point in time after which the asset concerned
by transaction was successfully delivered and removed.

function IsPrunable(transaction, state)
keys← ResolveAffectedKeys(transaction)
values← GetStateValuesByKeys(state, keys)
return IsEmpty(values)

end function



62 Paper A

Chaincode

The chaincode written to support the use case allows assets to be added to warehouses,
forwarded from sites to routes, and received from routes to distribution centers or delivery
points. When assets are received the opportunity is given to the receiving party to claim
the asset has been lost. Assets successfully received at a delivery point may be removed.
Chaincode functions also exist for adding sites and routes, as well as for querying the
state of the delivery network. Finally, a pruning predicate function was defined as part of
the chaincode. The function is implemented such that the state directly associated with
the last main block remains fully derivable, as defined in Section 3.4, which is facilitated
by the implementation outlined in Algorithm 1.

Simulation

An external application was written to simulate the behavior of the stakeholders of the
delivery network. The application is started with an asset cardinality and a seed for its
pseudo-random number generator. When initiated, the application operates in delivery
rounds. Each round, assets are generated, forwarded, lost or removed. A bounded
random number of assets are generated and assigned to a random path through the
delivery network. Assets currently in transit are forwarded, from site to route or from
route to site, via their previously assigned paths. Each time an asset is received at a site
it has a risk of being lost, determined by a probability property configured for each route.
The first delivery round after an asset has been successfully received at a delivery point,
it is removed. When no more assets remain to be generated or moved, the application is
terminated.

Benchmark

The simulation application was executed with the instruction to move 1000 assets through
the scenario delivery network, out of which 120 were randomly selected to be lost at
random routes of their delivery paths. When the simulation completed, relevant size
metrics were collected, and the one modified Hyperledger Fabric peer used to maintain
the blockchain was instructed to prune it. After pruning, size metrics were collected again
and then compiled into the statistics available in Table 3. Some of the statistics are also
illustrated in Figure 6. Significantly, the size of the entire blockchain was reduced from
about 9.51 MB to 1.47 MB, which is a size reduction of circa 84.49%. The reader may
note that the average block header size decreased from 277.36 B to 253.22 B, despite that
no header values of any block were altered in any way. This reduction is related to the
way the header size is calculated, described in Section 4.2.
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Table 3: Asset delivery simulation statistics. Fractional numbers are rounded to two decimal
places.

Pruned Original
Block Size
Mean µp(b) = 3 470.28 B σp(b) = 1 705.41 B µb = 22 376.50 B σb = 4 862.87 B
Extremes maxp(b) = 27 407 B †minp(b) = 219 B maxb = 28 357 B †minb = 918 B

Total S̃ = 1 474 868 B S = 9 510 013 B

Header Size
Mean µp(H) = 253.22 B σp(H) = 24.71 B µH = 277.36 B σH = 29.56 B
Extremes maxp(H) = 313 B †minp(H) = 151 B maxH = 313 B †minH = 152 B

Total S̃H = 107 619 B SH = 117 877 B

TX Size
Mean µp(t) = 123.80 B σp(t) = 201.63 B µt = 850.43 B σt = 12.59 B
Extremes maxp(t) = 892 B minp(b) = 68 B maxt = 895 B mint = 815 B

Total S̃t = 1 367 249 B St = 9 392 136 B

Avg. TXs/Block µp(u) = 25.99 σp(u) = 5.48 µu = 25.99 σu = 5.48

Cardinalities
Blocks h = 425 h = 425
Transactions unpruned = 768 pruned = 10 258 unpruned = 11 044 pruned = 0
Assets delivered = 880 lost = 120 delivered = 880 lost = 120

TX = Transaction.
† The always empty genesis block, which in this case is 16 B, is not considered.

Projection

Assume that blocks are generated at a rate of 1 block per unit of time t, that the
blockchain is expected to keep growing with constant block mean size, and that the
blockchain is pruned every time a new block is added. Given the definitions in Tables 1
and 3, Equation 8, n = 0, h = t, and ε = 0, then could the byte size of the blockchain S̃
be:

S̃ = nµb + (h− n)µp(b) + ε

= 0 · 22 376.50 + (t− 0)3 470.28 + 0

= 3 470.28t

At t = 425 would S̃ = 3 470.28 · 425 = 1 474 869, which is approximately the same
as S̃ in Table 3. If n = 100 blocks were kept unpruned at t = 425, then would the size
have been:

S̃ = nµb + (h− n)µp(b) + ε

= 100 · 22 376.50 + (425− 100)3 470.28 + 0

= 3 365 491
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Figure 6: Plotted asset delivery simulation statistics. All numbers are rounded to two decimal
places.

5 Discussion

Limiting Blockchain Growth

It was shown in Section 3.5 that pruning can only reduce, not effectually limit, the rate
of blockchain growth unless pruned blocks can be removed completely. If this is possible
in a given scenario depends on whether older blocks contain useful data, in the context
of consensus or otherwise, as explained in Section 3.1.

The Ratio of Prunable Transactions

The blockchain produced by the scenario presented in Section 4.3 could be reduced in
size by about 84.49% largely because circa 92.88% of transactions could be pruned. This
ratio is high because (1) most of the transactions were subjectively decided to not contain
interesting information, and (2) most transactions dealt with information having limited
lifespans. Assets were introduced, moved through the sites and routes of the delivery
network, and finally removed if nothing exceptional happened. This implies that the
gains of pruning could vary greatly with different kinds of use cases.

Identifying Prunable Transactions

In Section 3.4 conditions for pruning transactions are presented, and in Section 4.3 an
example of a working pruning predicate function implementation is given. The exam-
ple implementation is only able to identify transactions that deal with data that has
later been removed, but any set of eligible transactions that effectively cancel each other
out, or are fully superseded by later transactions, could be prunable. What would func-
tion implementations look like for pruning other—potentially highly complicated—sets
of transactions? Could such an implementation be identified that is guaranteed to find
all prunable transactions modifying, for example, a key/value store? Further work on
these and related questions could lead to selective transaction pruning becoming more
generally applicable.
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Sharing Pruned Blocks

What would happen if a blockchain network participant, perhaps in the process of re-
joining its network, was provided with a pruned chain of blocks? Through the use of
a hashing procedure similar to that presented in Section 4.2, the received blocks could
be decided to contain only valid remaining transactions. There would, however, be no
way for the receiver to know whether transactions it deems significant have been pruned,
meaning that it cannot be decided whether the state data structures derivable from the
received blocks are useful or not. This could perhaps be mitigated by having network par-
ticipants collectively agree on which states are significant, via state hashes or otherwise.
After applying pruned blocks, network participants could determine if the significant
states are unmodified. The feasibility of such an approach could be a topic for future
research.

Irrevocably Lost Transactions

Even though a blockchain network may continue to function if some transactions are
removed by all participants, it could be undesirable that information can be irrevocably
lost without any chance for it to be detected. A solution could include assigning differ-
ent portions of the past to special historian nodes. Another could be to make pruned
transactions have a random chance of becoming forever protected from pruning, which
could be tuned to make the event of permanent transaction loss unlikely.

Pruning Performance

In this paper, the only performance metric of concern has been that of disk space. It
could be expected, however, that the pruning algorithm presented in Section 3.3 may
use significant computer resources while being executed, such as primary memory or
processor time. As the algorithm requires the consideration of every transaction in ev-
ery considered block, it could be assumed to have something reminiscent of a linear
relationship between the number of considered transactions and processing time. The
implementation presented in Section 4.2 is able to execute while also participating in the
process of accepting new blocks and updating its current state. If the algorithm cannot
be modified to yield better than linear performance characteristics, then there might be
additional ways to avoid degrading the performance of more critical systems tasks, such
as the consensus process.
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6 Conclusions

It is shown in Sections 3 and 4 that selective transaction pruning is possible, theoretically
and practically. The anatomy of a general blockchain is presented, as well as descriptions
of how such maintains significant properties, a selective pruning algorithm, conditions for
selective transaction pruning to not affect significant state derivability, and methods for
predicting blockchain growth. A modified version of Hyperledger Fabric [17] is used to
demonstrate that a blockchain with transactions from an artificial supply chain scenario
could be reduced in size with 84.49% by pruning 92.88% of its transactions. It is our
conclusion that selective transaction pruning is a generally viable approach to limiting
blockchain growth while keeping transactions of interest, and that it could fruitfully be
applied in any context where the benefit of freeing up memory outweighs the gains of
having a complete blockchain.
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Syntactic Translation of Message Payloads Between

At Least Partially Equivalent Encodings

Emanuel Palm, Cristina Paniagua, Ulf Bodin, Olov Schelén

Abstract

Recent years have seen a surge of interest in using IoT systems for an increasingly di-
verse set of applications, with use cases ranging from medicine to mining. Due to the
disparate needs of these applications, vendors are adopting a growing number of mes-
saging protocols, encodings and semantics, which result in poor interoperability unless
systems are explicitly designed to work together. Key efforts, such as Industry 4.0, put
heavy emphasis on being able to compose arbitrary IoT systems to create emergent ap-
plications, which makes mitigating this barrier to interoperability a significant objective.
In this paper, we present a theoretical method for translating message payloads in transit
between endpoints, complementing previous work on protocol translation. The method
involves representing and analyzing encoding syntaxes with the aim of identifying the
concrete translations that can be performed without risk of syntactic data loss. While
the method does not facilitate translation between all possible encodings or semantics,
we believe that it could be extended to enable such translation.

1 Introduction

Improved IoT device interoperability has become an increasingly important ambition
during the last few decades, motivating research within both industry and academia.
For instance, the upcoming Industrial IoT (IIoT) paradigm, including efforts such as
Industry 4.0 [1], put heavy emphasis on making IoT devices work together to create
emergent applications [2] [3]. Factory plant owners are expected to be able to buy sensors,
actuators, vehicles and other machinery that can work together with little integration
effort. Consequently, finding a means to dynamically facilitate device interoperability
becomes a paramount objective. We contribute to this effort by presenting a theoretical
method for translating message payloads in transit between interacting endpoints, fitting
into systems such as the one depicted in Figure 1.

A significant ambition of this work is to provide message payload translation capabil-
ities to systems such as the Arrowhead Framework [4], a SOA-based IoT framework that
supports the creation of scalable cloud-based automation systems. This kind of frame-
work facilitates device service discovery and orchestration at runtime,without any need
for human intervention. A would-be Arrowhead translator service could be thought of
as an intermediary situated between two communicating systems, as is shown in Figure
1. As work has already been done on creating a multiprotocol translation system [5] for
Arrowhead, the translation method we describe in this paper could be thought of as a
complement to existing systems only supporting protocol translation.
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At the time of writing, the list of message encodings in common use includes XML
[6], ASN.1 [7], JSON [8], CBOR [9], Protocol Buffers [10] and many others. The length
of this list could be attributed to the diversification of connected computing devices
observed during the last few decades. As dimensions and costs of computers have been
decreasing, new paradigms—such as the Internet of Things (IoT), Big Data and Machine
Learning—have spurred the development of a growing variety of computing hardware,
ranging from low-power wearable gadgets to quantum computers. Even though the use
of many encodings may be important for optimizing the utility of these devices, it may
become a stumbling block when the need to interoperate arises.

Translation System

System A System B
HTTP

JSON

MQTT

CBOR

Translator
Service

Payload
Translation

Protocol
Translation

Figure 1: A conceptual translation system producing a transient service for protocol and payload
translation at runtime, which allows two otherwise incompatible systems to communicate.

Previous interoperability efforts of relevance include (1) protocol translation [5, 11, 12],
(2) encoding libraries supporting multiple concrete encodings [13, 14, 15] and (3) onto-
logical translation [16, 17, 18]). For instance, Derhamy et al. present a multiprotocol
translator useful within the Arrowhead IoT framework in [5]. Other protocol-related so-
lutions include translation agents, protocol gateways [19] and adapters [20]. These efforts
are not, however, concerned with message payloads, only with message protocols. Ad-
ditionally, while there are several software libraries that can translate message payloads
between encodings, none of these formally prove their translations to be lossless, which
is an important focus of this work. Libraries of this kind include Jackson [14], Serde [13],
Json.NET [15] and many others. Finally, ontological translation is concerned exclusively
with message encodings describing effective arrays of triples, while our model can work
with any kind of encoding.

In this paper, we present a theoretical method for translating encoding syntaxes. The
method is useful for formulating intersection encodings that allow for encoded messages
to be translated between multiple encodings with intersecting syntaxes without risk of
syntactic information loss. In particular, the method is described in terms of representa-
tions and validation functions, differing from traditional encoding specifications in that
they are concerned with abstract structures and elements instead of strings of bits.
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2 Problem Description

The purpose of this work is to provide a rigorous approach to reasoning about and pre-
venting information loss during syntactic encoding-to-encoding translation. However,
before presenting such an approach, we first provide our definitions of encoding, transla-
tion and lossless translation and describe when a translation is not lossless.

2.1 Message Encodings

We define encoding as a set of rules followed to convert interpreted messages to and from
binary strings. To convert such a message into a string, or to encode it, one is required to
(1) construct a syntax tree representing the original message, (2) convert the syntax tree
into a string of lexemes, and then, finally, (3) turn the lexemes into a binary string.1 The
result can then be decoded back into the original message by following the same steps in
reverse order as depicted in Figure 2.
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Alice 37Username:

Employee Record

Age in Years:

Figure 2: Interpretational levels of a JSON message. At the syntactic level, the types and values
of the individual parts of the message can be identified, but their context is unknown.

2.2 Message Translation

Message translation is the process of transforming one encoded message into another
with a different encoding, preserving some level of meaning associated with the original
message. A translator could be described as a function accepting a string ca adhering to
encoding a and returning either string cb encoded with b or an error ε, such as

fa,b : ca 7→ {cb, ε} (1)

1We use the term syntax tree exclusively for referring to abstract syntax trees. Concrete syntax trees,
or parse trees, are not strictly necessary for either encoding or decoding; hence we do not consider them
here.
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A translator fa,b can operate at any of the levels depicted in Figure 2, each providing
different knowledge about the string being translated. A syntactic translator fΣa,b knows
only of a syntax tree Va constructed from its input string ca, as well as the specifications
of its source and target encodings a and b. Facts not recorded in Va, such as knowledge
of certain structures being equivalent, canceling each other out or having insignificant
ordering, cannot be acted upon. Specifically, fΣa,b converts Va it constructed from ca into
an equivalent form Vb in the syntax of the target encoding b, and then encodes Vb into
string cb as shown in Figure 3.

ConvertDecode Encode

ca Va Vb cb

Figure 3: Syntactic translation is the process of decoding a string, converting its syntax tree,
and encoding the converted tree.

In the rest of this paper, we assume that syntactic translation from string ca to string
cb can be performed if a syntax tree Va can be converted into another tree Vb expressed
with the syntax of the desired target encoding. As we are only concerned with syntactic
translation, none of the other kinds are given any further treatment.

2.3 Syntactically Lossless Message Translation

For translation from syntax tree Va into syntax tree Vb to be considered syntactically
lossless, Va and Vb must express the same structural information. This requirement
means that if Va holds an array of three integers, then Vb must also contain an array of
the same three integers, even though Va and Vb being formulated with different encoding
type systems. Specifically, a syntactic translation from Va to Vb using fΣa,b is syntactically
lossless only if there exists a translator fΣb,a such that

fΣb,a(fΣa,b(Va)) = Va (2)

In other words, if the original syntax tree can be recovered from the translated tree,
all original data exist in the translated tree, and translation is lossless.

Note that syntax trees rather than strings are being compared. The input ca and
output c′a of a lossless translation could differ even if their syntax trees are identical.
Many encodings allow for the same syntactic structures to be encoded in multiple ways,
such as numbers being allowed to have multiple bases (decimal, hexadecimal, etc.) or text
strings being allowed to have particular characters escaped in several ways. Comparisons
must be considered as being made between abstract objects, such as numbers, lists or
texts, rather than concrete binary strings.
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2.4 Syntactically Lossy Message Translation

What would cause a translation to be syntactically lossy? An encoding could be thought
of a set of data structures useful for expressing arbitrary messages. When translating
between two encodings, a translator is required to express the data of the original message
using the data structures of the target encoding. During translation, information may
be omitted or changed, so that the original message can no longer be reconstructed.
Consider the example in Figure 4, in which a binary string is converted from XML to
JSON and back.

JSON XMLXML

Figure 4: XML [6] string translated to JSON [8] and back to XML, resulting in syntactic
information loss.

The XML messages in Figure 4 are syntactically different and, therefore, do not
satisfy the lossless property defined in Section 2.3. The first message uses attributes,
while the second uses child nodes. Additionally, the second message no longer has the
original name of its root element. XML provides no type equivalent to a JSON object,
which in this case resulted in lossy syntax transformations. A lossless translation between
XML and JSON would have required a rigorous syntax transformation scheme, or syntax
simulation, described further in Section 4.

3 Representation, Validation and Migration

Having established the notion of a syntactic encoding-to-encoding translation, we now
proceed to define syntax trees, syntaxes and intersection syntaxes and discuss how the
latter can guarantee lossless translation. In particular, we are interested in the repre-
sentations of these entities and in knowing when a given representation is valid. Our
definitions are presented using common constructs of first-order logic.2

2See [21] for an introduction. Note that we allow for any lowercase letter to denote a variable, use one
capital letter to denote a set or another collection, use P (x) to denote a predicate P with a single term
x, use P (x, y) to denote a predicate with two terms x and y, use ∧ instead of & to signify conjunction
(AND), use ⊕ as exclusive disjunction (XOR) connective, use ∃! as the uniqueness quantifier and, finally,
consider the implication θ → ψ to be equivalent to ψ ⇐= θ.
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3.1 Syntax Trees

We consider a syntax tree to be a directed acyclic graph constructed from nodes. Given
a syntax type name t and a syntax value x, we define a node V as a tuple:

V = 〈t : x〉 (3)

The type name t is a reference to a certain syntax type definition Ti that describes the
set of objects that are allowed to occupy the syntax value x ∈ X. There are two varieties
of syntax values: sequences and elements. If a syntax value is a sequence of child nodes,
its node is considered a Branch, while if it is an element, its node is considered a Leaf.

Branch Nodes

A Branch node V holds a type name t and a sequence of child nodes S ∈ S, as follows:

V = 〈t : S = [V0, V1, ..., V|S|]〉 (4)

S is the set of all possible child node sequences, while |S| is the number of child nodes
in S. Above, t names a syntax type definition Ti that identifies a relevant subset of
S ⊂ X. Various data structures serving to group values together, such as arrays, tuples,
sets, dictionaries, classes, etc., are suitably represented by Branches. We consider all
sequences to be fundamentally ordered and view the property of being unordered as
superimposed at the level of semantics.

Leaf Nodes

Every Leaf node V contains a type name t and an element e ∈ E as follows:

V = 〈t : e〉 (5)

E is the set of all objects not considered to be collections of other objects. Above, t
names a syntax type definition Ti that identifies a relevant subset of E ⊂ X. Such a subset
could include all numbers within a specific range or all strings of bytes conforming to a
certain text encoding. What concrete members E contains is subject to interpretation,
but useful definitions could include null, true, false, all other enumerators, all numbers
and all binary strings.

Example

The syntactic level of the JSON [8] object in Figure 2 could be written with our tuple
notation as

〈Object: [

〈Pair: [〈String: ”name”〉, 〈String: ”Alice”〉]〉,
〈Pair: [〈String: ”age”〉, 〈Number: 37〉]〉 ]〉

(6)
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The message is also shown in Figure 5 that makes the difference between Branch
and Leaf nodes more apparent.
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Figure 5: The Branches and Leaves of a JSON [8] syntax tree. Branches refer to other
nodes while Leaves hold elements.

3.2 Syntaxes

For a syntax tree to be valid, it must conform to the structure imposed by an encoding
syntax. Such validity is typically guaranteed during source string decoding via a set of
parse rules that effectively limit the set of acceptable lexemes to only those resulting
in valid tree nodes. However, syntactic translation entails converting a syntax tree into
another such tree, and the new tree may not be guaranteed to be valid. This possibility
necessitates the formulation of rules able to verify syntax trees directly. Consequently,
we define a syntax Σj as a collection of such rules, here named syntax type definitions
T = {T0, T1, ..., T|T |}, and a root set R as follows:

Σj = 〈T,R〉 (7)

Each syntax type definition Ti ∈ T describes one type of syntax tree node permitted
by one particular encoding, while the root set R identifies the types of nodes that are
allowed to be at the root of a complete syntax tree.

Syntax Type Definitions

A syntax-type definition Ti ∈ T is a predicate, accepting a syntax tree node V as its
only term. Ti must not be satisfied unless the type name t ∈ V equals a type name ti
associated only with Ti. Consequently, every Ti must be defined in general as

Ti(V ) ⇐= (V = 〈t : x〉)︸ ︷︷ ︸
1

∧ (t = ti)︸ ︷︷ ︸
2

∧ p(x)︸︷︷︸
3

(8)

Ti(V ) is satisfied only if three conditions are fulfilled: (1) the tested term is a syntax
value V = 〈t : x〉, (2) the syntax-type name t ∈ V is equal to ti, which is the name of
Ti, and (3) an arbitrary function p(x) yields true when provided with the syntax value
x ∈ V . To make syntax-type definitions less verbose, the following form is also used:

Ti(〈t : x〉) ⇐= (t = ti) ∧ p(x) (9)
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For instance, the syntax-type definition for a Boolean Leaf type could be specified
as follows:

Boolean(〈t : e〉) ⇐= (t = Boolean) ∧ (e ∈ {1, 0}) (10)

The syntax node V = 〈Boolean : 1〉 would satisfy the Boolean(V ) predicate, while
the nodes 〈Boolean : true〉 and 〈Binary : 0〉 would not.

Syntax Tree Validation

We are now able to represent a syntax as a tuple Σj = 〈T,R〉 and are able to determine
if any individual syntax tree node is valid. To determine if the entire syntax tree is valid,
however, we must examine both the validity of its root node and whether its syntax type
is allowed at the root of the tree. For this reason, we define the predicate V alidΣj

(V,Σj),
satisfied as follows:

V alidΣj
(V,Σj) ⇐= (V = 〈t : x〉)︸ ︷︷ ︸

1

∧ (Σj = 〈T,R〉)︸ ︷︷ ︸
2

∧ (t ∈ R)︸ ︷︷ ︸
3

∧ (∃!Ti ∈ T )(Ti(V ))︸ ︷︷ ︸
4

(11)

In other words, if (1) V is a syntax tree node, (2) Σj is a syntax, (3) the syntax type
name t ∈ V exists in the syntax root set R, and (4) there exists exactly one syntax type
definition Ti ∈ T ∈ Σj satisfied by V , then V describes a valid syntax tree according to
Σj.

Example

We have now provided a sufficient number of definitions to formulate a complete syntax.
An example of a naive syntax is given for the JSON [8] encoding in Table 1. A sample
JSON syntax tree has already been presented in Equation 6.

3.3 Intersection Syntaxes and Syntax Tree Migration

When comparing any two syntaxes, one may discover that some of their types are similar.
Both may define syntax types for numbers, text strings, arrays, maps, etc. Deciding on a
list of associations between the types of encoding syntaxes, one might be able to identify
syntax trees that would be considered valid by either syntax, i.e., the type name of every
node in a tree could be replaced with the name of its corresponding type. We regard
such a set of syntaxes with explicit type associations as an intersection syntax and refer
to the process of changing the type names of a syntax tree as syntax migration.

If C = {C0, C1, ..., C|Σ|} is a set of syntax type intersections and Σ = {Σ0,Σ1, ...,Σ|Σ|}
is a set of concrete syntaxes, we formally define an intersection syntax Σ̂ as follows:

Σ̂ = 〈C,Σ〉 (12)
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Table 1: Naive JSON syntax.

Syntax Type Definitions (T )

Branches
Object(〈t : S〉) ⇐= (t = Object) ∧ (∀Vi ∈ S)(Pair(Vi))
Pair(〈t : S〉) ⇐= (t = Pair) ∧ (S = [V0, V1]) ∧ String(V0) ∧ v(V1)
Array(〈t : S〉) ⇐= (t = Array) ∧ (∀Vi ∈ S)(v(Vi))

Leafs
Number(〈t : e〉)⇐= (t = Number) ∧ (e ∈ F ∧ e 6∈ {+∞,−∞,NaN})
String(〈t : e〉) ⇐= (t = String) ∧ (e ∈ UTF-8)
True(〈t : e〉) ⇐= (t = True) ∧ (e = true)
False(〈t : e〉) ⇐= (t = False) ∧ (e = false)
Null(〈t : e〉) ⇐= (t = Null) ∧ (e = null)

Auxiliary Function
v(V ) = Object(V )⊕ Array(V )⊕Number(V ) ⊕

String(V )⊕ True(V )⊕ False(V )⊕Null(V )

Root Set (R)
{Object, Array}

F is the set of all IEEE 754-2008 [22] binary64 floating-point numbers, while UTF-8 is the set of all
UTF-8 compliant byte strings. Note that u(V ) does not mention Pair since nodes of that type may
only occur inside Objects.

Syntax Type Intersections

Each Ci = {T0, T1, ..., T|Σ|} is a set of associated syntax type definitions, where exactly one
Tk is taken from each associated syntax Σj ∈ Σ.3 We refer to every such association Ci as
a syntax type intersection and consider each an effective syntax-type definition, describing
the intersection of the sets of syntax values every Tk ∈ Ci deems valid. Consequently,
each Ci can be used to validate a syntax node V as follows:

V alidCi
(V,Ci) ⇐= (V = 〈t : x〉)︸ ︷︷ ︸

1

∧ (∃!Tk ∈ Ci)(t = tk)︸ ︷︷ ︸
2

∧ (∀Tk ∈ Ci)(Tk(〈tk, x〉))︸ ︷︷ ︸
3

(13)

V alidCi
(V,Ci) is satisfied by three conditions: (1) the tested term is a syntax value

V = 〈t : x〉, (2) the syntax type name t ∈ V is identical to the name of exactly one
associated type definition Tk ∈ Ci, and (3) x ∈ V together with the type name tk of
each Tk ∈ Ci satisfies every associated predicate Tk(V ). In other words, if a syntax
node V names one syntax-type definition in Ci and satisfies all such predicates in Ci,
V alidCi

(V,Ci) is also satisfied.

3We do not provide any algorithmic means of determining correct or optimal sets of Ci in this paper,
even though it could be a relevant topic for future research.
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Syntax Tree Validation

Ensuring that the entire syntax tree V is valid according to a certain intersection syntax
Σ̂ requires both that every syntax tree node be valid as asserted by V alidCi

(V,Ci) and
that the root node of that tree be valid in every concrete syntax Σj ∈ Σ ∈ Σ̂, as follows:

V alidΣ̂(V, Σ̂) ⇐=

1︷ ︸︸ ︷
(Σ̂ = 〈C,Σ〉) ∧

(∃!Ci ∈ C)(V alidRoot(Ci,Σ) ∧ V alidCi
(V,Ci))︸ ︷︷ ︸

2

V alidRoot(Ci,Σ) ⇐= (∀Tk ∈ Ci)((∃!〈T,R〉 ∈ Σ)(tk ∈ R))

(14)

In other words, if (1) Σ̂ is an intersection syntax 〈C,Σ〉 and (2) there exists exactly
one syntax-type intersection Ci ∈ C where (a) every concrete type definition Tk ∈ Ci

is a valid root type and (b) V alidCi
(V,Ci) is satisfied, then V describes a valid syntax

tree according to Σ̂. If an intersection syntax is able to successfully validate at least one
syntax tree V , we refer to its encodings as being at least partially equivalent.

Syntax Migration

In Section 2.2, we claimed that if a syntax tree could be converted into another such with
another encoding syntax, syntactic translation could be performed. We have just defined
V alidΣ̂ that can be used to determine if a syntax tree would be considered valid by a
different syntax if only its type names were changed, or migrated, to those of a related
syntax. This definition means that if an intersection syntax Σ̂ can be formulated and a
syntax tree V satisfies V alidΣ̂, V can be translated to any other encoding in Σ̂.

More formally, given two syntaxes {Σa,Σb} ⊂ Σ ∈ Σ̂ and a syntax tree Va of Σa

satisfying V alidΣ̂(Va, Σ̂), syntax migration is the process of replacing every type name t
of every node in Va with its corresponding type of Σb, resulting in Vb. The correspondence
between types in Σa and Σb is established by the syntax-type intersections C ∈ Σ̂.

Example

We have again reached the point where we can formulate a concrete example based on
the presented theory. As an intersection syntax requires at least two concrete syntaxes,
we provide a naive CBOR [9] subset (CBORS). CBOR is used due to being similar to
JSON.4 Disregarding the names of CBOR’s and JSON’s syntax types, they differ only in
JSON requiring the first Pair element to be a String, in not being able to express the
same numbers, and in only CBOR having a dedicated type for arbitrary byte strings.
Table 2 outlines the CBORS syntax, while Table 3 shows a JSON/CBORS intersection
syntax.

4This is no coincidence, as CBOR was designed to be able to encode everything expressible with
JSON. For illustrative purposes, however, we do not include enough of the CBOR specification for this
to be true here.
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Table 2: Naive CBOR Subset (CBORS) syntax.

Syntax Type Definitions (T )

Branches
Map(〈t : S〉) ⇐= (t = Map) ∧ (∀Vi ∈ S)(Pair(Vi))
Pair(〈t : S〉) ⇐= (t = Pair) ∧ (S = [V0, V1]) ∧ d(V0) ∧ d(V1)
Array(〈t : S〉) ⇐= (t = Array) ∧ (∀Vi ∈ S)(d(Vi))

Leafs
Integer(〈t : e〉) ⇐= (t = Integer) ∧ (e ∈ Z ∧ −264 < e < 264)
ByteString(〈t : e〉)⇐= (t = ByteString) ∧ (e ∈ STRING)
TextString(〈t : e〉) ⇐= (t = TextString) ∧ (e ∈ UTF-8)
True(〈t : e〉) ⇐= (t = True) ∧ (e = true)
False(〈t : e〉) ⇐= (t = False) ∧ (e = false)
Null(〈t : e〉) ⇐= (t = Null) ∧ (e = null)

Auxiliary Function
d(V ) = Map(V )⊕ Array(V )⊕ Integer(V )⊕ByteString(V ) ⊕

TextString(V )⊕ True(V )⊕ False(V )⊕Null(V )

Root Set (R)
{Map, Array, Integer, ByteString, TextString, True, False, Null}

STRING is the set of all possible byte strings. Note that d(V ) does not mention Pair since nodes of
that type may only occur inside Maps.

Table 3: JSON/CBORS intersection syntax.

Syntax Type Intersections (C)

ΣJSON ΣCBORS

Object ↔ Map
Pair ↔ Pair
Array ↔ Array
Number ↔ Integer

6↔ ByteString
String ↔ TextString
True ↔ True
False ↔ False
Null ↔ Null

Associated Syntaxes (Σ)
{ΣJSON,ΣCBOR}

↔ denotes syntax type correspondence, while 6↔ signifies a syntax type not having a corresponding
type.
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Consider the JSON syntax tree in Equation 6. Assuming that we desire to convert
this syntax tree to CBORS, we first ensure that it is valid according to our intersection
syntax Σ̂ by testing if it satisfies V alidΣ̂(V, Σ̂). After ensuring this, we proceed to migrate
it to the desired syntax, resulting in

〈Map: [

〈Pair: [〈TextString: ”name”〉, 〈TextString: ”Alice”〉]〉,
〈Pair: [〈TextString: ”age”〉, 〈Integer: 37〉]〉 ]〉

(15)

A JSON syntax tree V not satisfying V alidΣ̂(V, Σ̂) would have to refer to a number
that is not an integer in the range (−264, 264). If we, on the other hand, were translating
from CBORS to JSON, an unsatisfactory CBORS syntax tree V would have to use a
Pair with a node that is not a TextString as the first element, an integer not expressible
as a binary 64-bit IEEE float [22], or contain any ByteString.

4 Conclusions and Directions for Future Work

The problem of heterogeneous system interoperability has received significant attention
in recent years. However, while efforts have made to translate message protocols, the
problem of rigorous message payload translation has been largely ignored. In this paper,
we presented a theoretical method for message payload translation that facilitates pre-
venting information loss during syntactic encoding-to-encoding translation. The method
is described in terms of representations, validation, intersections and migration of syntax
trees.

The formalism of representation is a key aspect of the proposed method. If there
is any ambiguity, the result may be erroneous. Therefore, the method needs to be
used correctly and rigorously. Despite possible disadvantages, we believe that a method
of defining various encodings strictly is necessary for being able to correctly translate
message payloads between heterogeneous systems.

As the interpretation of a given encoding specification may leave room for ambiguity,
multiple incompatible syntaxes could be formulated for that encoding. To prevent such a
case, vendors and developers would be responsible for the implementation and provision
of syntaxes, avoiding the mismatch between the used encoding and syntax.

Future work includes the extension and refinement of the method, which involves
investigating various aspects of syntax simulation and translator implementation.

The syntactic translation solution we presented in this paper only allows for conver-
sions between encodings with intersecting syntaxes. To be able to translate any syntax
tree to any other encoding, there must be a way to simulate syntactic structures that
cannot be expressed in the native type system of the target encoding. Such simulation
would require one to reason about the types of simulated data structures the receiver of
a translated message would be able to interpret correctly, i.e., the activity of simulation
could be regarded as constructing new encodings out of existing encodings.

Lastly, we believe that the implementation and evaluation of a multiencoding trans-
lator using our translation method would be a significant complement to this work.
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Abstract

Many use cases coming out of initiatives such as Industry 4.0 and Ubiquitous Computing
require that systems be able to cooperate by negotiating about and agreeing on the
exchange of arbitrary values. While solutions able to facilitate such negotiation exist,
they tend to either be domain-specific or lack mechanisms for non-repudiation, which
make them unfit for the heterogeneity and scale of many compelling applications. In
this paper, we present the Exchange Network, a general-purpose and implementation-
independent architecture for digital negotiation and non-repudiable exchanges of tokens,
which are symbolic representations of arbitrary values. We consider the implications
of implementing the architecture in three different ways, using a common database, a
blockchain, and our own Signature Chain data structure, which we also describe. We
demonstrate the feasibility of the architecture by outlining our own implementation of it
and also describe a supply-chain scenario inspired by one transportation process at Volvo
Trucks.

1 Introduction

With the realization of trends such as Industry 4.0 [1] and Ubiquitous Computing [2],
more computing devices are becoming interconnected than ever before. While the coming
wave of smart machines may be able to facilitate a plethora of compelling use cases, we
believe many of them will be economic in nature. Whether in smart manufacturing, value-
chain integration, or product life-cycle analysis [1], goods, services, data, money, or other
assets may have to change owners for a given use case to become viable. Every change
of ownership is always preceded by some form of negotiation, whether it be accepting
a delivery or bartering about a price, and the exchange may have to yield a receipt or
other proof. While these negotiations could be handled by humans talking or writing to
each other, as we assume to be typical nowadays, a digitized solution results in machines
being able to monitor, assist or even participate in the negotiation process.

Systems facilitating negotiation and exchange do exist, with applications such as
securities trading [3], resource access [4], and e-procurement [5]. However, these solutions
make many assumptions about who is in control of the system, who must be trusted,
and what can be negotiated about, which make them unfit for use cases outside of
their intended application domains. Other recent efforts build on blockchains or other
distributed ledgers to guarantee non-repudiation. However, most of these seem to either
assume that a domain-specific negotiation protocol is enough [6] or require that code
contracts be written for every automatable use case [7] [8] [9].
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In this paper, we present the Exchange Network (EN), a general-purpose and imple-
mentation-independent architecture for the negotiation and exchange of token owner-
ships, facilitating a form of marketplace where both humans and computers can (1)
negotiate, (2) exchange arbitrary assets or other commitments, and (3) prove that past
exchanges have taken place. We show how different ways of implementing the architec-
ture, which is defined in terms of abstract components and messages only, have diverging
implications on governance, privacy, the credibility of proofs and system scalability. In
particular, we briefly present an implementation example based on the Signature Chain
data structure, a type of distributed ledger that facilitates privacy by not requiring peers
to share records of their interactions with others. Furthermore, we compare the imple-
mentation to two other possibilities: one based on a common database and the other
based on a permissioned blockchain system [10]. We also describe how an EN can fa-
cilitate a simple supply-chain use case in which a transport operations unit coordinates
transports with a carrier.

A primary objective of our research efforts is to identify an unobtrusive architec-
ture for digital cooperation. We assume that this architecture provides constructs with
strong and well-understood analogies in real-world practices, which also do not diverge
behaviorally from their real-world counterparts in significant ways. Cooperations can
be transient or perpetual, remain unchanged for long periods of time or be renegotiated
frequently, have strict privacy requirements or be carried out in public. Additionally,
cooperation takes place in settings where different means of adjudication are available,
making it relevant to ensure that the applied system is compatible with whatever means
of litigation, arbitration, or peer judgement is available. To realize an architecture able to
represent such characteristics, we chose ownership as the major construct and negotiation
as the means of changing ownerships and then explore how that decision might affect the
properties of any would-be implementations. Rather than building on an existing negoti-
ation protocol, such as FIPA00037 [11], in which parties agree about actions to perform,
we decided to design our protocol own around the concept of owned tokens, which are
symbolic representations of arbitrary values. As we assume it is generally desirable to
prove who owns what tokens, e.g., in courts of law, we also consider how different types
of architecture implementations affect that ability.

2 The Exchange Network

An EN is either a monolithic or distributed application that facilitates a digital market-
place where well-known types of assets can be negotiated about, exchanged, and proven
to have been part of past exchanges. Concretely, an EN facilitates coordinated changes
to the owners of tokens, which could be thought of as symbolizing certain rights or obliga-
tions, such as the right of ownership, the obligation to render a service, or the obligation
to pay. The architecture facilitates this process through four components, shown in
Figure 1.
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Negotiation Service User Registry Exchange Ledger Definition Bank

Allows users to 
negotiate about and 
accept exchanges.

Records all users that 
can be, or have been, 
negotiated with.

Records all past 
agreements, with 
any related proofs.

Records definitions 
for all types of ex-
changeable tokens.

Network Members

Figure 1: Exchange Network components. Arrows denote usage.

Before presenting each of these components in turn, we would like to stress that we
make no assumptions about how they store data or coordinate user interactions, as long
as data can be accessed and users can interact. The components fulfill abstract functions
that can be realized in multiple ways. Later in Section 4, we consider three ways of
implementing the components and describe how each way has its own implications on
governance and data distribution, as outlined in Figure 2, as well as interaction proofs
and performance.

- Centralized Control
- Centralized Data

- Consortium Control
- Replicated Data

- Distributed Control
- Distributed Data

Common Database Permissioned Blockchain Signature Chains

Figure 2: The three considered ways to implement ENs. Note that replication and distribution
of data are different in that the former requires each consortium member to own a more or less
complete copy of all data, while the latter implies that data are shared only as needed. These
implementations are further described in Section 4.

2.1 Negotiation Service

The first component we consider is the Negotiation Service (NS), which allows the users
of an EN to propose, accept and reject exchanges. It relays proposals between pairs
of negotiating users, which take turns trying to formulate a proposal that both deem
acceptable.1 If such an acceptable proposal can be identified by those users, the NS
submits it to the Exchange Ledger (EL) component, which makes sure it can be proven
to have taken place to any relevant third party, such as courts of law, insurance agencies,
lenders, partners, and so on.

1We limit ourselves to negotiations between only two users to avoid making the procedure too com-
plicated. While negotiations with more users may be quite relevant to many scenarios, we leave the
topic for future research.
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We describe the negotiation procedure in terms of three phases: (1) qualification, (2)
acceptance and (3) finalization, which are depicted as a naive state machine in Figure 3.

ACCEPTED
REJECTED

OR ERROR

«state»
Qualification

QUALIFIED

Firstly, the parties take turn in 
trying to formulate a qualified 
proposal.

UNQUALIFIED

OR ERROR

«state»
Acceptance

«state»
Finalization

FINALIZED
ERROR

The party first at creating such 
a proposal sends it to the  
counter-party, which may 
accept or reject it.

If accepted, the proposal is 
sent to the Exchange Ledger.

Figure 3: A state machine showing how two negotiating users could progress from an initial
proposal to an accepted and finalized one. A negotiation can be terminated at any time by
either participant. Additionally, any number of negotiations can be ongoing at the same time
between every pair of users.

Qualification

When a user has found another user that may provide one or more goods, services,
or other assets of interest, the first objective is to find a qualified proposal believed to
be acceptable to both. A qualified proposal is one that leaves no room for ambiguity
regarding who would own what, should the proposal be accepted. The proposal is found
by having the negotiating users take turn trying to formulate it. If not enough information
is available for a candidate proposal to be qualified, an unqualified proposal may be used
instead. Unqualified proposals may refer to abstract types of assets, include alternatives,
or identify undesired assets. To facilitate the communication required to send these
proposals, the NS provides the data types in Figure 4.

The possibility of using the And, Or and Not types, shown in Figure 4, allows users
to formulate proposals analogous to those humans make while negotiating. Consider the
example in Figure 5.

The example could be thought of as a digital version of the human request “Can I
have a package of 500 small button head screws? Make sure it is not the cap screw kind.
I can pay in Euro.” A possible answer to this request is depicted in Figure 6, which could
be transliterated as “I could give you this package of 600 button head machine screws for
€4.50.”
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proposer: ID
wants: Expression
gives: Expression

Proposal
«message»

id: ID?
type: ID
data: Any?

Token
«record»

Expression
«tagged union»

nil | Token | And | Or | Not

item: Expression
Not

«record»

items: Expression[]
Or

«record»

items: Expression[]
And

«record»

A description of what a 
sending proposer wants 
and offers to give in return 
to the proposal receiver.

A placeholder for nil, 
representing nothing, or 
any of the below four types.

Identifies either one specific 
asset or a general type of 
asset, depending on 
whether an id is stated or 
not. May also include 
additional data about the 
asset in question.

Logical expressions, used to 
indicate that some included 
expression or expressions 
are to be regarded as a 
conjuction, inclusive 
disjunction or negation of 
what is wanted or given in a 
proposal of relevance. 
These could, for example, 
be used to indicate that 
some asset is not wanted, 
or that multiple such are 
offered.

receiver: ID

Figure 4: The Proposal message and associated data types. ID represents an arbitrary identi-
fier type, question marks (?) are used for optional values, while brackets ([]) are used to denote
array types. Note that the types and fields represent a minimally viable set of proposals, not all
useful such.

proposer: "A"
wants:

gives:

Proposal

Not

And

type: "screw-bhcs"
Token

type: "screw-bh"
Token

data: {amount: 500, size:"s"}

type: "euro"
Token

A

receiver: "B"

Figure 5: An example of a unqualified proposal.

Let us assume that the first user deems the counter-offer acceptable, carries only a
5 Euro bill, but does not mind giving away the change. That proposal is depicted in
Figure 7 and is the first example to be qualified. Because it refers only to tokens with id
fields and uses no Or or Not expressions, it is clear who would own what if the proposal
would be accepted.
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proposer: "B"
wants:

gives:

Proposal

type: "screw-bhms"

Token

data: {amount: 600, size:"s"}

type: "euro"
Token

data: {amount: 4.50}

id: BHMS00219-101321

B

receiver: "A"

Figure 6: Another unqualified proposal is sent as a reply to that in Figure 5.

proposer: "A"
wants:

gives:

Proposal

type: "screw-bhms"

Token

data: {amount: 600, size:"s"}

type: "euro"

Token

data: {amount: 5.00}

id: BHMS00219-101321

id: EUR-ESSESESS-RX3154002

A

receiver: "B"

Figure 7: A qualified proposal intended as a reply to the proposal in Figure 6.

Technically, a proposal is qualified if and only if it satisfies the IsProposalQualified
function outlined in Listing C.1.

IsProposalQualified(function
IsExpressionQualifiedreturn

and IsExpressionQualified

IsTokenQualified(function
token.idreturn nil

IsExpressionQualified(function
expressionif

return IsTokenQualified
is Token

expressionelse if is :

else
return
:

false

foreach item in expression.items
IsExpressionQualifiedif

return
not

false
return true

proposal):
)proposal.wants
)proposal.gives

expression):
:

And
:

expression)

item):

≠
token):

(
(

(

(

Listing C.1: Functions for determining if a Proposal is qualified. A qualified proposal must
contain only Token and And instances, and each Token must have an id. See figure 4 for
type definitions.
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Before we continue, we would like to stop and highlight how the proposed system
of token expressions makes it possible to formulate logically impossible, or unsatisfiable,
unqualified proposals, such as “I want wrench B103, but I do not want wrench B103.”
Systems dealing with arbitrary proposals may find it relevant to be able to detect un-
satisfiable proposals using an SAT solver [12] or otherwise. Qualified proposals should,
however, not be subject to this problem. Formulating unsatisfiable proposals requires one
asset to be both wanted/given and not wanted/given at the same time, while qualified
proposals do not allow the use of Not expressions.

Acceptance

As soon as one user formulates a qualified proposal, the objective becomes to determine
if the counter-party also deems that proposal acceptable. While it may seem rather
straightforward, it could require extra steps, depending on the NS implementation. Steps
include providing signatures or first submitting the proposal to a special verifier service.
After having sent a qualified proposal, the counter-party must either reject it by sending
a new counter-proposal or accept it using the message in Figure 8.

proposal: Proposal
Acceptance

«message» Records of this type could 
hold other data relevant to 
the acceptance of their 
proposals.

Figure 8: Message used to accept a received qualified proposal. The proposal is rejected by
sending a new counter-proposal or terminating the negotiation.

Another way to signal disinterest could be terminating the negotiation. If a counter-
proposal is sent or received, the negotiation returns to the Qualification phase.

Finalization

When a qualified proposal has been formulated and accepted, it is submitted by the NS
to the Exchange Ledger. The users are notified when it is known whether submission
succeeded or failed, after which the negotiation returns to the Qualification phase. If
there is more to negotiate about, negotiation continues. In any other case, the users are
free to terminate the negotiation session.
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2.2 User Registry

The second logical component, the User Registry (UR), is tasked with knowing (1) the
internal identity and (2) the external identities of each EN user. If may provide individual
users access to some or all of that information.

Internal Identity

The internal identity allows the EN to refer to a given user, which is what fundamentally
enables the network to express that a particular asset belongs to a certain user. What
type of internal identifiers are used will depend on the implementation the UR. If both
the UR and the Exchange Ledger are hosted by a trusted authority, common integers
would likely suffice. In the blockchain and Signature Chains examples in Section 4, public
keys [13] would have to be used.

External Identity

External identities, on the other hand, allow users to recognize other users outside the
bounds of the EN. To determine where a user is physically located, it may be required to
know where to deliver an exchanged good or to whom to render a service. Other details
of relevance could be company identifiers, tax numbers, or contact details, which could
become relevant in the case of a dispute, to assess user trustworthiness, or to contact a
user using a different platform. How external identities are verified or whether multiple
such identities are allowed per user depends on the UR implementation.

2.3 Exchange Ledger

The third logical component, the Exchange Ledger (EL), allows each user to (1) deter-
mine if proposed or already finalized ownership exchanges are sound and (2) prove that
past ownership exchanges have taken place. While an EL could perhaps fulfill these
responsibilities in multiple ways, we conceptualize it as doing so by maintaining and
granting access to a history of Exchanges, as shown in Figure 9.

acceptance: Acceptance
Exchange

«record»
The record could hold other 
data not available until 
acceptance finalization, 
such as a timestamp or the 
outcome of a vote.

Figure 9: Records an accepted and finalized ownership exchange. We also refer to these records
as agreements.
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Exchange Soundness

In particular, for a given ownership exchange to be sound, it must be known whether

1. the identities of the exchanging parties can be trusted,

2. the proposer owns the given tokens, unless created,

3. the acceptor owns the wanted tokens, unless created, and

4. the exchanged tokens are well-defined, and their regulations conformed to, as de-
scribed in Section 2.4.

While we are leaving room for an EL to reject unsound exchanges as part of nego-
tiation finalization, as described in Section 2.1, it may or may not guarantee that all
soundness properties are satisfied for each finalized exchange. It might, for example, be
difficult to make guarantees about external regulations being adhered to, as explained
later in Section 2.4. Users should always validate proposals of concern by themselves to
limit the room for mistakes or other errors.

Exchange Proof

Courts of law, insurance agencies, partners, and other parties may be interested in see-
ing proof that particular ownership exchanges have taken place. How these proofs are
facilitated by a particular EL depends on its implementation. The architecture makes no
other assumption than that there is some way to present such proofs. We consider how
these proofs could be facilitated in Section 4.

2.4 Definition Bank

The fourth and last logical component is the Definition Bank (DB). Its main task is to
define the implications of owning or creating each type of token, especially in terms of
what may be done with the token and the asset it represents. The DB component could
be seen as a dictionary, allowing EN users to look up Definitions, as outlined in Figure
10, by their names, hashes, or other identifiers.

Internal Regulation

These regulations, which we also refer to as tests, ensure that tokens cannot be abused
inside an EN. A test could be thought of as a function taking a proposal, an EL and a
DB as arguments, returning true only if the proposal is sound. For example, tests could
limit the number of times a certain type of token can change owners, restrict creation or
ownership of specific tokens to a fixed set of eligible users, or set expiration dates after
which some tokens may no longer be exchanged. In other words, they could be used to
prevent some unsound ownership exchanges from taking place at all.
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tests: Test[]
Type

«record»

terms: Term[]

Contract
«record»

types: Type[]
parent: Contract?

Two sets of references to  
internal and external 
regulations, which we 
refer to as tests and 
terms, respectively.

A set of related token 
types, possibly including 
those of a parent 
Contract.

Definition
«tagged union»

Contract | Type | Test | Term

Any kind of data type 
related to describing token 
ownership implications.

Figure 10: The proposed types of DB definitions. Our naive Contract contains only Types,
implying that it can verify contractual events but not facilitate them. This situation is in contrast
to systems such as Ethereum [14], where contracts contain executable code.

External Regulation

These exist to ensure that the assets represented by any EN tokens are not abused outside
the bounds of the EN. We refer to these regulations as contractual terms or just terms.
For example, let us assume that two EN users have exchanged one token representing
the right to a vehicle repair for another representing a promise of payment. At this
point, there is no way for the EN itself to determine if any vehicle is repaired or any
payment is made, as these events happen outside the EN’s computers. This situation
could be mitigated by ensuring that the types referenced by the exchanged tokens contain
contractual terms honored by some legal authority, perhaps in the form of legal prose. As
long as the exchange itself counts as proof, which we consider in Section 4, that authority
could be used to resolve disputes.

3 Signature Chains

To demonstrate the viability of the EN architecture, we now present a implementation
designed to maximize the opportunity for exchanges to be kept private. Concretely, the
implementation is intended to mimic the way common paper contracts and other forms of
signed instruments are used. Such instruments are typically known only to two agreeing
parties until the event of a dispute, in which case the instruments are revealed to a legal
authority or other arbitrator.

Our implementation operates without mediation, meaning that no set of parties needs
to see and ratify each finalized exchange. It relies on a data structure we named the
Signature Chain (SC), which uses cryptographic signatures and hashing [13] to ensure
the (1) authorship, (2) order and (3) definitions of an exchange be denied or altered after
its finalization.2

2The data structure has significant similarities to the transaction type employed by R3 Corda [9].
They can both refer to arbitrary definitions and previous interactions by hash, and may also be signed
by two parties. Corda transactions, however, carry state objects, while SCs carry token exchanges.
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3.1 Implementation

Our system consists of a node both serving a web client and communicating with other
nodes, as depicted in Figure 11.3

NetworkClient

HTML CSS ES2015

Node

Server Peer

node.js ES2015

HTTP(S)WebSockets
HTTP(S)

Figure 11: The general design of our EN implementation. Humans operate each Node using
a web browser Client. Every Node uses an internal Server to both provide its Client with
static HTTP(S) [15] resources and send runtime data via WebSockets [16]. Each Node also
contains a Peer module, which is used to communicate with the Peer modules of other Nodes
over HTTP(S). The design requires no central data repository or any centralization of control.

Both the node and the client it serves are coded in TypeScript [17], which compiles to
ES2015 (JS) [18] before execution. The JS of the node is executed by the node.js runtime
[19], while the client HTML [20], CSS [21] and JS are executed by a web browser. We
used these technologies and standards mostly because they are familiar to us. There are
no inherent reasons why they should be technically superior to any other particular sets
of technologies.

The client allows human users to manage negotiations; formulate, modify, accept
and reject proposals; list finalized exchanges; list tokens together with the users that
own them; and list the users themselves; among other things. It also performs proposal
satisfiability tests, mentioned also in Section 2.1.

While the implementation indeed works and can demonstrate the SC concept, some
important delimitations were made to reduce implementation effort. For example, all
User Registry and Definition Bank data are provided at node startup and cannot change
during runtime. Additionally, no communications are encrypted, and client users are not
authenticated or authorized.

3.2 Data Structure

A Signature Chain is a chain of records, where each record may refer to (1) a previous
related record and (2) a definition of relevance. Each record is cryptographically signed
[13] by one or more attestors, in our case, a proposer and acceptor, and every reference to
either a record or definition is the cryptographic hash of that data [13]. By implication,
a third party given a chain of records with any associated definitions becomes able to
verify that the records

3Available at https://github.com/emanuelpalm/en-signature-chains-poc. The paper describes GIT
commit 694e3a73a1fbae67b9c106d47bd5.
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1. indeed have been signed by their attestors,

2. were created in a certain order, and

3. always have referred to the provided definitions.

Rather than chains of records being stored in a centralized or replicated repository,
each possible pair of EN users maintains and extends its own sets of chains, as depicted
in Figure 12. This procedure leaves room for each pair of users to maintain privacy, given
that they can agree on not sharing their mutual records with others. Thus, both users
of each pair can independently reveal any shared chain to any party of interest, such as
a court of law, a partner or another party.

A B

C

Each possible pair of users may keep 
their own sets of signature chains, 
denoted here by edges A, B and C.

Figure 12: The distinct sets of Signature Chains of a three-user EN.

To concretely implement the data structure, a given EN may need to make the mes-
sages in Section 2 able to form chains of signatures, which could be realized by amending
the Proposal and Acceptance types as described in Figure 13.

proposer: ID
wants: Expression
gives: Expression

Proposal
«message»

definition: Hash?
predecessor: Hash?

proposal: Proposal
Acceptance

«message»

signature: Signature

signature: Signature

Now optionally refers to a 
definition, which identifies 
some or all of the wanted 
and given Token types. May 
also refer to the Exchange 
being the predecessor of 
this Proposal, and must 
contain the signature of 
the proposer.

receiver: ID

Must now contain the 
signature of the receiver of 
the proposal.

Figure 13: Amended variants of messages first described in Figures 4 and 8.

Additionally, each relevant EN definition type, such as the ones in Figure 10, ought
to refer to its subdefinitions via their hashes. An example of such an SC is illustrated in
Figure 14.

Chain of Signed Records

P

T

T

T

X

X

X

C

C

Different Types of Definitions

TypesProposal

Exchanges

Contracts Tests & Terms

Figure 14: An example EN SC. Arrows denote references by hash.
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4 Comparisons of Possible Implementations

The Exchange Network (EN) architecture leaves room for many kinds of concrete im-
plementations. Here, we consider how three possible implementations would affect (1)
governance, (2) privacy and data distribution, (3) proofs of interactions and (4) sys-
tem scalability. The implementation from Section 3 is included in the comparison. We
summarize the properties of the implementations in Table 1.

Table 1: Properties of considered possible EN implementations.

Common Database Blockchain Signature Chains

Governance Trustee Consortium None

Data Distribution Centralized Replicated Distributed

Interaction Proof* Trustee Word Vote Signatures Only

Scalability Bound-by-Database Bound-by-Vote Unbounded

*Cryptographic signatures can always be used, as in Section 3.2. Note that in blockchain systems,
transactions are typically signed only by their issuers by default, as in [22] and [23]. A satisfactory
proof requires the signatures of both agreeing parties.

4.1 Common Database

Building an EN around a traditional database, such as MySQL [24], could allow strict
control of the members of a given network, as well as rigorous soundness checks of all
finalized exchanges. If negotiations are relayed through a centralized Negotiation Service,
ongoing negotiations could also be monitored and verified. In either case, a single party
must be entrusted with maintaining the network. Due to its appointment and position,
the trustee’s word could count as proof of interaction, if considered trustworthy. At
least the acceptor, proposer and trustee must know of each finalized exchange. System
scalability would be limited primarily by the underlying database.

4.2 Permissioned Blockchain

If instead using a system such as Hyperledger Fabric [22] as a foundation, a consortium
rather than a single party is entrusted with maintaining the system while enabling the
same strict member control and soundness checks as above. However, this process comes
at the cost of having to replicate and vote on all data, which significantly limits system
scalability. It also means that each consortium member must know of each finalized
exchange. While there may be ways to limit interaction visibility through cryptography,
those ways would likely also limit the opportunity for exchange soundness to be verified
by the consortium. If a fact of significance has been seen and ratified by each maintaining
member, a majority testimony could be used as proof that the event has occurred.
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4.3 Signature Chains

Without any centralized control, network members are themselves responsible for deter-
mining what other parties can be trusted and for ensuring exchange soundness. As no
trustee or consortium can testify to the exchange’s credibility, only cryptographic signa-
tures can be used as proof. There is no inherent limit to scalability, as there is no global
synchronization point. Only the acceptor and proposer of each exchange must know that
it has occurred.

5 Supply Chain Use Case

To make the utility of the EN architecture more apparent, we present here an example
use case involving the transportation of truck components, akin to how Volvo Trucks
currently manages such transports. Some EN implementation is used to propose, accept
and register each completed interaction between some Carrier (C) and a Transport Op-
erations (TO) unit. The carrier takes a number of components from a manufacturer to
some assembly plant, as directed by the TO. The purpose of each EN negotiation is to
establish a new set of rights and obligations as a result of some contractual term being
fulfilled, using the EN messages we describe in Sections 2.1 and 3.2. The four interactions
proceed as follows.

1. Call-Off : TO sends an EN Propose to C, wanting C to accept the obligation
to transport a given number of components, guarantee a particular delivery time,
and insure the components while in transit. If C believes the requested transport
capacity will be unavailable, it may reject the proposal or propose another delivery
time. We assume C replies with EN Accept.

2. Transport Request : TO sends one EN Propose to C for each individual component,
requesting cross-docking and transportation. Each message specifies a pick-up time,
a serial number, and sequencing information, which are used to ensure that com-
ponents are delivered in the order of assembly. C would normally commit to each
request via an EN Accept but could reject them in case of complications. Such
early rejections would allow TO to immediately search for alternatives to avoid
costly delays at the assembly plant.

3. Pick-Up: C then sends one EN Propose to TO at the time of loading and departure
of each individual component, which would normally be accepted via EN Accept
messages. Rejections could indicate mismatches in tracking data, perhaps due to
human errors. Automatically detecting such errors could save the time and costs
that would normally be incurred by manual inspection.

4. Delivery : Upon arrival to the assembly plant, C sends and EN Propose to TO,
wanting the delivery to be confirmed, which it does by sending an EN Accept
only if the conditions agreed upon in steps 1 and 2 are met. If, for example, a
component would be out of sequence, TO could make a counter-proposal for the
carrier to agree on a new deal for the deviating item. This setup could lead to
faster deviation agreements, easier follow-ups and reduced costs.



6. Discussion 103

While details regarding the obligations of TO to C, this use case should illustrate
how an EN could be used to automatically handle possible deviations online and without
human intervention. As an EN is used, all completed negotiations are registered on a
shared Exchange Ledger, which we hope can be used as evidence in the case of a dispute.
Additionally, C could use finalized exchanges not yet paid for as a guarantee of future
income, which, for example, could be useful when negotiating interest rates with a bank.

6 Discussion

The concepts we present in this paper could be a significant step towards a paradigm in
which machines are increasingly able to monitor, assist and autonomously participate in
the economy. To make the remaining steps of that journey more apparent, we discuss
here (A) shortcomings of our design, (B) the idea of trustless systems, and (C) how our
architecture could fit into the context of industry.

6.1 Design Shortcomings

Ambiguity of Ownership

What does it really mean to be the proven owner of a digital token? This problem
is fundamental not only to EN tokens but also to paper contracts and other signed
instruments. For example, what is a deed of ownership really worth? The answer is
that it depends on whether the token or instrument in question is honored. This honor
is typically established by ensuring that litigation, or some other form of adjudication,
is possible in the case of a dispute. Because each party knows that any counter-party
can take legal action, a tangible incentive exists to obey the terms of any agreement.
For our architecture to be practically useful, effort needs to be spent on formalizing the
token tests and terms of Section 2.4 both to avoid the risk of parties interpreting tokens
differently and to ensure that courts of law or other adjudicators can be used if desired.

Limits to Negotiation Expressiveness

For an EN to be able to replace human-to-human negotiation, its Negotiation Service
(NS) must be able to represent any expression a human could utter in such a context.
While we demonstrated how it could represent three expressions in Section 2.1, we know
of cases that cannot be easily represented. For example, “I want at least 1000 small
screws and will pay no more than €0.” One way to approach the issue could be to use a
corpus of human negotiations and then extend the NS specification until all negotiations
in that corpus can be represented.
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Involving Secondary Authorities

Having access to one or more trusted authorities can be critical for collaboration to
become practically possible. Courts of law, private arbitration firms, insurance agencies,
money lenders, or inspection firms could be of relevance to establish trust between parties.
In Section 4.2, we showed how more than one authority could be part of maintaining
the same EN but believe it will be difficult to gather all useful authorities in the same
consortium. A more realistic approach could be to extend the architecture to allow
the involvement of secondary authorities, which could veto or approve proposals during
negotiation finalization.

Dynamic Definition Creation

In Section 1, we implied that smart contract systems such as [7], [8] and [9] require
that code-as-contracts are installed before they can be used. In contrast, the abstract
negotiation protocol we present in Section 2 does not require definitions to be in place
before collaborations can start. As every interaction is a negotiation and the result of
every negotiation can be regarded as a new definition, negotiations may result in the
creation of new contracts, amendments or exceptions. However, we do not explore how
this process can be facilitated in this paper.

Regulating User Identities

We made no assumptions in this paper about how party identification should be regulated
while knowing it is an important and delicate issue. Future work should consider how to
prevent identity abuse, which could lead to real-world entities being able to avoid being
held accountable for their actions.

6.2 Trustless is Not Enough

Readers from the blockchain community may react to our seeming ignorance of blockchain
systems being trustless [25], which implies they remove the need to rely on trusted mid-
dlemen. While blockchain systems indeed do this, they only do it to an extent. Claiming
that a system is trustless is the same as saying that it relies on a network of voting com-
puters instead of a traditional authority. Such computer networks are currently unable to
perform all useful functions that traditional authorities can. In particular, contemporary
blockchain systems are (1) largely limited to acting on signed facts that they cannot ver-
ify beyond system boundaries and (2) wield no other fundamental power than deciding
what can be recorded in their ledgers. In Bitcoin [23], this arrangement is sufficient to
maintain account balances and prevent incorrect transactions, but it is not enough to
punish fraudulent users for fooling others into sending them money. In contrast, tra-
ditional authorities can make rational decisions regarding the truthfulness of facts, and
they could compel misbehaving users into conformance by invoking the power of a police
force. Consequently, we do not see how the current state-of-the-art in blockchain tech-
nology would be sufficient for typical industrial use cases without also involving trusted
authorities.
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6.3 Industry Integration

While our solution may help enable entirely new economic use cases, we deem it most
relevant to first consider how existing economic processes can be digitized. Digital ne-
gotiation and ownership exchange could lead to benefits that are generally in line with
process digitization, such as reducing the time needed to complete contractual interac-
tions with new or existing partners or being able to track and analyze those interactions
in real-time. Such improvements could lead to (1) increased room for asset accountability,
(2) more fine-grained economic forecasting and (3) reduced capital requirements.

There are, however, some roadblocks that need to be cleared before industry adoption
can begin. We have already mentioned compatibility with legal authorities and arbitra-
tors, as well as with insurance agencies, money lenders, and inspection firms, which are
just a few examples of all potentially relevant authorities. Compatibility with these par-
ties will likely require considerable legal effort both to make the technology lawful and to
establish collaboration models and best practices for different industries. Another major
roadblock is finding a suitable EN implementation. We have already mentioned that
we believe that this implementation needs to be as non-intrusive as possible on existing
business models and practices. We had this objective in mind when we designed the
Signature Chain implementation in Section 3, but it is far from complete.

7 Conclusions

The EN architecture we proposed in this paper constitutes a generic model for asset
transfer, where each asset is represented by a unique digital Token. We have shown that
a possible implementation of the model based on Signature Chains could ensure a high
degree of privacy between peers and facilitate horizontal scalability, allowing it to meet
the performance requirements and heterogeneity of industrial applications and global
markets.

The primary objectives of this work are (1) unobtrusiveness, (2) implementation
independence, and (3) reusability. The first objective we address by building on the
ideas of negotiation and ownership to formulate the EN domain model. The latter two
we approach by separating our architecture into four abstract components, which can be
described as follows.

• Generic Asset Negotiation and Transfer : The Negotiation Service component pro-
vides a clearly defined model for collaboratively refining offers into concrete and
tentative asset transfers, which can ultimately be executed atomically and logged
immutably. In essence, this conceptual model provides an open high-level protocol
specification for asset-for-asset transfer negotiations, where an asset represents any
form of right or obligation. Like any protocol, it could be part of many kinds of
applications and be supported by many different protocol implementations.
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• User Identity Tracking : The User Registry component keeps track of other EN
members in terms of both their internal and external identities. The former al-
lows users to be identified within an EN system, while the latter helps anchor EN
members to legal entities or other forms of identities outside the same EN.

• Exchange Regulation: The Definition Bank component stores definitions, serving
to programmatically and legally define the implications and regulations associated
with each kind of exchangeable asset. It fulfills this role by storing regulations,
which are both used to verify exchanges and serve as proof of any violations.

• Exchange Record-Keeping : Finally, the Exchange Ledger component is tasked with
storing an immutable history of ownership exchange records while guaranteeing
that each meets the constraints and requirements imposed by the other components.
Each record in this ledger serves as proof that a described interaction has taken
place and could be useful as evidence if provided to a third party.

It is our belief that the architecture in this paper, or a solution like it, could prove
pivotal for digitizing economic interactions between industries and within society at large.
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Abstract

Distributed ledger technologies have been considered for a plethora of interesting use
cases, ranging from supply chain integration to open medical journals. While able to
facilitate novel forms of collaboration, the technologies also tend to break with existing
business practices by imposing new requirements on cooperation governance, interaction
privacy and contract making. In this paper, we identify distributed consensus algorithms
and code-as-contracts as common causes of these paradigmatic divergences, and propose a
system design that depends on neither of them. In particular, we present an experimental
implementation of our Exchange Network architecture that uses a consensus procedure
comparable to that of R3 Corda, but that models its interactions as negotiations about
ownership exchanges rather than as function invocations and finite state machine tran-
sitions. Furthermore, we characterize the current cooperational paradigm and outline
six requirements of adherence, as well as considering both how our own solution and
how R3 Corda could fulfill them. We conclude that our design approach provides better
opportunity for compatibility with conventional legal and business practices than the
state-of-the-art.

1 Introduction

Since the introduction of Bitcoin [1] and the subsequent blockchain hype [2], significant
effort has been invested into finding new use cases for the technology, not the least during
the last few years. Recent works investigate the use of different kinds of distributed
ledger technologies to integrate supply chains [3], facilitate tamper-proof land registries
[4], create open medical journal systems [5], among a plethora of other examples [6].
A common denominator for many such use cases is the attempt to digitize contractual
cooperation, a process that until this point has been carried out primarily by humans.
While businesses, institutions and individuals rely increasingly on digital systems for
managing their assets and collaborations, the step is often yet to be taken for those
systems to participate in the negotiation and exchange of value between stakeholder
systems. Such digital cooperation could enable automated assistance, verification and
execution of contractual interactions, which in turn could reduce lead times, cut costs,
or enable new types of business models. In the long run, it may even pave the way for
economies where most financial interactions are planned, executed and followed-up by
computer agents, which would represent the wants and needs of their respective owners.
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However, while existing blockchain systems may be able to facilitate new kinds of novel
business models and use cases, the concrete technologies they are constructed from tend
to make them break with the ways in which businesses and other institutions tradition-
ally have been organizing their collaborations. Through the use of distributed consensus
algorithms, as in the case of Bitcoin [1], Ethereum [7] and Hyperledger Fabric [8], they
impose new requirements on cooperation governance and interaction privacy by requiring
any collaborating parties to review and vote on the validity of each others’ interactions.
By using executable code rather than legal prose as the primary means of defining con-
tracts, as in Ethereum, Hyperledger Fabric and R3 Corda [9], they effectively sideline
existing legal practices and expertise, which are concerned primarily with common con-
tracts, deeds and other signed instruments. Code contracts also inhibit the application of
national laws by, for example, making it non-trivial to rigorously map ledger transactions
to rights and obligations [10]. Additionally, the distributed consensus algorithms some
of these systems rely on have well-known performance and scalability problems in signif-
icant contexts [11], which further exacerbates the difficulty of integrating the technology
into existing business processes and systems.

In this paper, we consider whether these issues can be mitigated by mimicking the
way contractual cooperation is traditionally handled, which typically involves elements
such as contracts, receipts, signatures, witnesses, mediators and adjudicators. We note
that using voting instead of relying on trusted middle-men is rare and that contracts
and receipts tend to be written in well-defined legal language rather than executable
computer code. To avoid the disruption caused by these new forms of consensus and
contracts, we propose (1) that interactions are made directly between pairs of system
participants instead of being mediated by voting networks and (2) that code-as-contracts
are replaced with a system of negotiation about digital ownership representations, which
we refer to as tokens, each of which has its ownership and transfer implications stated in
conventional legal language.

Our argumentation for replacing typical code-as-contracts solutions with systems for
negotiated ownership exchanges, whenever relevant, is our primary contribution in this
paper.

We begin the paper by considering how others avoid this disruption, intentionally or
not, after which we present a characterization of conventional contractual cooperation
and outline six requirements of adherence. The requirements allow us to reason about
the extent the design, which we subsequently present, facilitates collaboration and avoids
disruption. To make it more apparent how other solutions relate to our system design,
we also consider how R3 Corda [9] can fulfill our requirements and compare it directly
to our implementation. Significantly, R3 Corda uses the same fundamental approach to
consensus as our solution, even if it provides no direct alternative to code-as-contracts.
Finally, we end the paper with a discussion and our conclusions.
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2 Related Work

Not all distributed ledger solutions have all the paradigmatic problems we introduce in
Section 1. Here, we consider how some of these solutions relate to our contributions.

2.1 No Code-as-Contracts

Bitcoin [12] provides a stack-based language called Script,1 which is limited to specify-
ing programmatic conditions for spending unspent transaction outputs. The Cryptonite
system [14], originally created from the Bitcoin source code, omits Script support com-
pletely to simplify the pruning of older transactions from the blockchain it maintains.
Both of these systems are intended to facilitate counter-parts to electronic debit cards,
making their purpose familiar to many.

However, their use of distributed consensus algorithms make them considerably slower
and less deterministic than debit card transfers [11], causing a considerable paradigmatic
divergence. Also, the architecture and implementation we present in this paper provide a
general-purpose system for negotiating digital ownership exchanges, which should mean
that our solutions can facilitate more kinds of use cases.

2.2 Integration of Legal Prose

The Ethereum blockchain system claims to support Smart Contracts [7], which were
originally described by N. Szabo in [15]. In the case of Ethereum, such a contract is
a set of computer instructions that are executed as decided by the majority vote of
the Ethereum network. A significant limitation of such a system, however, is that the
Ethereum majority wields no other power than deciding what to append to the immutable
ledger it maintains. If anything bound to an external domain, such as the physical world,
would be out of order, the majority is unable to mitigate it without assistance. While
national legal institutions are available for trying and correcting contractual deviations
in other human domains, it is currently unclear how and if such institutions will consider
smart contracts and their ledgers as evidence [10].

To improve compatibility with existing legal instances, some distributed ledger sys-
tems allow for the association of legal prose with their code-as-contracts. That kind of
hybrid contracts are sometimes referred to as Ricardian Contracts, a term introduced by
I. Grigg in [16]. For example, R3 Corda [9] allows its state objects, which are consumed
and created via transactions, to refer to both legal prose and contract code. Such state
objects are exchanged in accordance with predefined patterns, referred to as flows, which
are defined in a programming language. Another related example is the Ergo program-
ming language of the Accord project [17]. The language facilitates the creation of logical
and legal contracts that can be executed by smart contract systems, such as Hyperledger
Fabric [8].

1As Script is not specified in the Bitcoin paper, interested readers might want to consult [13], which
contains a formal description of the language. Note that we consider Script too limited to be a code-as-
contracts system.
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However, referencing or integrating legal prose is not the same as making code-as-
contracts optional. Both of these systems rely on domain models in which the state of a
distributed computer is updated through the execution of functions. Consequently, the
programming of states and functions becomes critical to the formulation of contracts.
Further, ensuring a contract is legally compatible should require that each computer
state can be mapped to legal rights and obligations in such a way that a given institution
can know the standing of each party.

In contrast, the architecture we propose in Section 4.1 relies on a domain model
of negotiated ownership exchanges. Consequently, defining the implications of token
ownership becomes the primary concern of a contract maker, not the programming of
states or functions. As each token ownership symbolizes a set of rights and obligations,
determining the legal standing of each relevant party becomes an exercise of determining
the ownership history of each relevant token. For certain tokens, only knowledge of the
current owner may be enough. While our domain model perhaps could be extended by
superimposing state machines or any other code-as-contract capabilities, it is significant
that our system can be used without such capabilities. We assume that a simpler system
stands a better chance of being tried successfully in national courts of law and receive
business adoption, for which reason it we deem it relevant to focus primarily on critical
functionality, however useful other features may be.

2.3 No Distributed Consensus

While the distributed consensus algorithms often employed by blockchain systems may
make them practically resilient to certain kinds of attacks, it also leads to them ex-
posing contracts and transactions to network participants not directly concerned [18].
Additionally, distributed consensus can be a time or resource consuming process, having
significant impact on transactions throughput and latency [11].

Instead of trying to mitigate these issues directly, R3 Corda avoids them by not
requiring a distributed consensus algorithm to be used by normal nodes [9]. Consensus is
reached either between pairs of peer nodes, which does not necessitate the use complex
algorithms, or within pools of notary nodes, which do have to use distributed consensus
algorithms. Notary pools are tasked, as requested by normal nodes, to ensure state objects
cannot be consumed twice, which ensures that transferable assets cannot be duplicated
by sending them to more than one recipient, among other things. As the notaries only
see the cryptographic hashes [19] of the state objects they are given, they are unable
to inspect the data of the state objects they validate. Note that when not dealing with
assets that can be transferred multiple times, notary nodes do not have to be used at all.

The system design we propose in Section 4 relies on the same fundamental approach
to consensus as R3 Corda, by which we imply that interactions do not need to be relayed
through a network of reviewing voters, and that ledgers are replicated only between pairs
of nodes. While perhaps our implementation could have been built on top of R3 Corda
as a so-called CorDapp [9], or as a modification and extension of the R3 Corda code
base, the from-scratch implementation we present in Section 4.2 helped us avoid both
the complexities of a layered design and the considerable task of removing and replacing
Corda’s code-as-contracts cababilities.
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3 Contractual Cooperation

To be explicit about what process we attempt to digitize, we here present a sort of
specification for verifying our and any other digital cooperation solutions against. We
first present an informal characterization, intended to capture elements key to contrac-
tual cooperation, after which we rephrase our characterization as a list of qualitative
requirements.

3.1 Characterization

• What is contractual cooperation? We think of it as free agents coming together in
a joint undertaking, where each agent is incentivized to collaborate by it somehow
contributing to the fulfillment of the agent’s own goals or ambitions. In other
words, contractual cooperation takes place in a setting where different parties take
advantage of each other’s capabilities for the sake of promoting the realization of
their own distinct ends, which may or may not be conflicting. The undertaking is
formalized by having each involved agent accept a contract, which states the terms
relevant to the enterprise and the roles of each participant.

• What problems characterize such cooperation? More than any other, we believe
it to be uncertainty about the incentives of the counter-parties. Cooperation takes
place in a volatile world where circumstances change, suddenly or gradually. New
competitors emerge, laws change, and trends shift, which could make prices drop,
new markets become available, or existing businesses unprofitable. Such events
might make any counter-parties want to discontinue their involvement or change
their terms. Other potential problems may include counter-parties being or be-
coming fraudulent, incapable of fulfilling their roles, unaware of key limitations, or
leaking sensitive facts to competitors.

• How are those problems mitigated? Through the use of different kinds of risk aver-
sion strategies. A common such is ensuring misbehaving parties can be compelled
to conform or compensate its counter-parties, which can be accomplished by agree-
ing on an adjudicator when a contract is accepted. Examples of such adjudicators
could include courts of law, private arbitration firms or member councils. A re-
lated strategy is to prevent or disincentivize misbehavior by letting trusted third
parties act as mediators, controlling sensitive exchanges or other interactions. The
same strategy could also be used in the context of blockchain systems or other
distributed ledgers, in which case the voting majority of the system become the
mediator. This requires, however, that the majority carriers enough power to pre-
vent all relevant kinds of misbehavior, as we note may be problematic to facilitate
in Section 2.2. Other possible strategies could involve the continual assessment of
trustworthiness, the use of insurance agreements, or the concealment of significant
facts from counter-parties and competitors, which otherwise would be able to use
that information to the detriment of the concealing party.
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3.2 Requirements

1. Provable acceptances. Being able to prove that an agreement has taken place gives
each party some power over its counter-parties, in the case they would break the
terms of that agreement. Those proofs could, for example, be used in a court of law,
or be shown to others to deter them from collaborating with any offenders. Note
that with the term acceptance, we refer not only to the signing of a contract, but
to any interaction where the contractual standings of two or more parties change.
Such changes in standing may occur when contractual clauses are fulfilled, such as
by delivering a good.

2. Renegotiable terms. As circumstances can change after a collaboration has been
formalized, there has to be room for its terms to be renegotiated. Ideally, such a
renegotiation would not involve having to formally cancel and restart an under-
taking, as it could lead to accountability issues or costly delays. Being able to (1)
amend contracts and (2) make contractual exceptions could be important tools for
facilitating renegotiations.

3. Effective adjudication. Having access to adjudication is paramount both because
it could allow disputes to be resolved and because it could deter the cooperating
parties from deviating from their contract. However, it requires that the adjudica-
tor, whether it be a court of law or anything else, is able to (1) access, interpret
and consider relevant evidence, as well as (2) compel the party deemed at fault to
make reparations. This may require that a given agreement is considered lawful by
the adjudicator, which could, for example, include proof that a voluntary offer and
accept has taken place [10]. If the adjudicator is a computer system, that system
must be able to access whatever power is required to enforce its judgements.

4. Consistent interpretation. There must be some kind of framework in place that
guarantees that each contractual partner interprets the terms of their contract the
same way, especially considering what right and obligations are associated with
each party at every given instance. This is very much related to having access to
effective adjudication, as the adjudicator could be asked to judge if interpretations
differ. However, it also stresses the need for any contractual partners to agree on a
well-defined legal vocabulary when a contract is initially formulated and mutually
accepted.

5. Trustworthy identification. Contractual partners have to be able to reliably deter-
mine if any received request originated with their counter-parties or not, as means
of avoiding fraud by malicious third parties. Additionally, adjudicators need to
be able to assert that signatures, or other attestations, are authentic and refer to
legally relevant entities. In a technical setting, this may involve mapping legal
entities to cryptographic primitives, such as public keys.
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6. Interactional privacy. Knowledge about the activities of one’s competitors is a
significant means to improve the effectiveness of one’s own business strategies. This
means that ensuring contracts and cooperations remain concealed from competitors
can be key to preventing that information from affecting their competitiveness. It
could, for example, involve the obligation of each party to not reveal certain facts
about a contract, or the use of cryptographic means to ensure messages remain
obscure to potential observers.

As much as we would like to be able to show that this list of requirements is complete,
we suspect it serves better as a starting-point than a complete ontological definition. For
example, we do not consider the economics of participation. If the cost of taking part
in a cooperation system would be too high, the incentives for participating would be
defeated. However, including that requirement would demand that we determine whether
or not the concepts we consider do fulfill it, which we found no reasonable way of doing.
Other requirements of relevance could include message integrity guarantees, or having
reasonably synchronized clocks.

4 The Exchange Network

Having presented what contractual cooperation is, as well as key requirements for such
a cooperation to be meaningfully executed, we are now ready to describe how we be-
lieve the process could be made digital. Concretely, we first outline an implementation-
independent architecture, then describe one way to implement it, and then, finally, de-
scribe a simplified use case, indented to demonstrate the utility of the architecture and
implementation design.2

4.1 Architecture

An Exchange Network 3 (EN) is a monolithic or distributed application, facilitating a
digital marketplace where well-known types of assets can be negotiated about, exchanged,
and proven to have been part of past exchanges. Concretely, an EN facilitates coordinated
changes of the designated owners of electronic tokens, which could be thought of as
symbolizing certain rights or obligations, such as the right of ownership, the obligation
to render a service, or the right to receive payment for the fulfillment of a task. The
architecture consists of four primary components, shown in Figure 1.

2We have already presented both the architecture and the implementation in a previous conference
paper [20]. That paper is primarily concerned with the abstract negotiation protocol of the architecture,
as well as considering different ways in which the architecture can be implemented. In this paper,
however, we instead focus on the digitization of contractual cooperation, provide a much more extensive
description of how we use the signature chain data structure and our implementation, as well as consider
how our implementation and other distributed ledger solutions comply with our understanding of the
current contractual paradigm.

3Inspired by the term social network, we chose the name Exchange Network for our architecture.
The name is intended to invoke the idea of an ever-changing network of interacting actors, primarily
concerned with the negotiation and exchange of goods, services, or other values.
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Negotiation Service User Registry Exchange Ledger Definition Bank

Allows users to 
negotiate about and 
accept exchanges.

Records all users
that can be 
negotiated with.

Records all past 
agreements, with 
any related proofs.

Records definitions 
for all types of ex- 
changeable tokens.

Network Members

Figure 1: EN components. Arrows point from the using to the used component, which, for
example, means that the Negotiation Service makes use of both the User Registry and Exchange
Ledger components. Each component also provides some kind of interface for eligible network
members.

Before presenting each of those components in turn, we want to stress that we make
no assumptions about how they store data or coordinate user interactions, as long as data
can be accessed and members interact. The components fulfill abstract functions that
can be realized in multiple ways. However, we only describe one way of implementing
the architecture in this paper, which is intended demonstrate a non-disruptive approach
to designing systems for digital collaboration. In [20], we also consider how a blockchain
system like Hyperledger Fabric [8], or a common database system like MySQL [21], could
be used as implementation foundations.

Negotiation Service

The Negotiation Service (NS) allows the members of an EN to propose, accept and reject
exchanges of tokens. It relays proposals between pairs of negotiating parties, which take
turn in trying to formulate a proposal both deem acceptable. If such an acceptable
proposal can be identified by those parties, the NS submits it to the Exchange Ledger
(EL) component, which makes sure it can be proven to have taken place to any third
parties relevance, such as courts of law, insurance agencies, lenders, partners, and so on.
A negotiation is a procedure of three phases, (1) qualification, (2) acceptance and (3)
finalization, depicted as a state machine in Figure 2.

1. Qualification. The first objective of a negotiation is to find a qualified proposal
believed to be acceptable to each party. A qualified proposal is such that leaves no
room for ambiguity regarding who would have what rights and obligations if the
proposal would be accepted. The proposal is searched for by having the negotiating
members take turn in trying to formulate it. If not enough information is had for
a candidate proposal to be qualified, an unqualified such may be used instead.
Unqualified proposals may refer to abstract types of tokens, include choices, or
identify undesired tokens. To facilitate the communication required to send these
proposals, the Proposal message in Figure 3 is provided.
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ACCEPTED
REJECTED

OR ERROR

«state»
Qualification

QUALIFIED

Firstly, the parties take turn 
in trying to formulate a 
qualified proposal.

UNQUALIFIED

OR ERROR

«state»
Acceptance

«state»
Finalization

FINALIZED
ERROR

The party first at creating 
such a proposal sends it to 
the  counter-party, which 
may accept or reject it.

If accepted, the proposal is 
sent to the Exchange Ledger.

Figure 2: A naive state machine, illustrating how two negotiating parties could progress from
an initial proposal to an accepted and finalized such. A negotiation can be terminated at any
time by either of its participants.

2. Acceptance. As soon as one party formulates a qualified proposal, the objective
becomes to determine if the counter-party deems it acceptable. After having sent
the qualified proposal, the counter-party either rejects it by sending a new counter-
proposal, or accepts it using the Acceptance message in Figure 3. If rejected, the
negotiation returns to the Qualification phase.

3. Finalization. When a qualified proposal has been both formulated and accepted,
it is submitted by the NS to the EL. The parties are notified when it is known
whether that submission succeeded or failed, after which the negotiation returns to
the Qualification phase. If there is more to negotiate about, negotiation continues.
In any other case, the parties are free to terminate the negotiation session.

User Registry

The User Registry (UR) is responsible for associating the the internal identity of each EN
member with its external identities. An internal identity is an identifier used to refer to an
EN member within the system, such as in proposals, acceptances or exchanges. External
identities, on the other hand, is what allows members to recognize other members outside
the bounds of the EN. In whatever manner a given UR component is implemented, be
it a database of x.509 certificates integrating with some public-key infrastructure [22] or
something completely different, it must be able to guarantee that the identities of all
members are trustworthy.
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proposer: ID
wants: Expression
gives: Expression

Proposal
«message»

id: ID?
type: ID
data: Any?

Token
«record»

Expression
«tagged union»

nil | Token | And | Or | Not

item: Expression
Not

«record»

items: Expression[]
Or

«record»

items: Expression[]
And

«record»

A description of what a 
sending proposer wants 
and offers to give in 
return to the receiver of 
the proposal.

A placeholder for nil, 
representing nothing, or 
the Token, And, Or and 
Not types.

Identifies either one 
specific or a general type 
of ownership, depending 
on whether an id is 
stated or not. May also 
include arbitrary 
parameter data.

Logical expressions, used 
to indicate that some 
expression or expressions 
are to be regarded as a 
conjuction, inclusive 
disjunction or negation of 
what is wanted or given 
in a proposal of 
relevance. These could, 
for example, be used to 
indicate that some asset 
is not wanted, or that 
multiple such are offered.

proposal: Proposal
Acceptance

«message»

receiver: ID

Sent to indicates that a 
proposal has been 
accepted by its receiver.

Figure 3: The Proposal and Acceptance messages, with associated data types. ID represents
an arbitrary identifier type, question marks (?) are used for optional values, while brackets ([])
are used to denote array types. The types and fields are a minimally viable set of such, not all
that would be useful.

Exchange Ledger

The EL conceptually maintains an append-only ledger of Exchange records, each of
which consist of an Acceptance, as depicted in Figure 3, and any other data of relevance.
As a consequence, the EL can be used by EN members to (1) determine if proposed
or already finalized ownership exchanges are sound, and (2) prove that past ownership
exchanges have taken place. Soundness can be determined by ensuring the tokens of a
proposal adhere to their tests, which may include taking historic exchanges of relevance
into account. Soundness is described further in Section 4.1. The EN architecture makes
no assumptions about how past ownership exchanges are proven to have taken place, as
long as they can be. However, we consider one concrete way such proofs can be facilitated
when we consider our implementation in Section 4.2.
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Definition Bank

The last component, the DB, defines the implications of owning or creating every known
type of token, especially in terms of what may be done with them and any entities they
represent. A DB could be regarded as a dictionary, allowing EN members to look up
Definitions, as defined in Figure 4, by their names, hashes, or other identifiers.

tests: Test[]
Type

«record»

terms: Term[]

Contract
«record»

types: Type[]
parent: Contract?

Two sets of references 
to internal and external 
regulations, which we 
refer to as tests and 
terms, respectively.

A set of related token 
types, possibly 
including those of a 
parent Contract.

Definition
«tagged union»

Contract | Type | Test | Term

Any kind of data type 
related to describing 
token ownership 
implications.

Figure 4: Some proposed kinds of DB definitions. Our naive Contract contains only Types,
implying it could be useful for direct machine-verification of contractual events if any of those
Types would refer to Tests.

Concretely, the purpose of maintaining definitions is to ensure soundness can be
verified for proposed and finalized exchanges. Soundness is established by asserting that
a given exchange adheres to both internal and external regulations.

• Internal Regulation. These regulations, which we also refer to as tests, ensure tokens
cannot be abused inside an EN. A test could be thought of as a function taking
a proposal, an EL and a DB as arguments, returning true only if the proposal is
sound. For example, tests could limit the number of times a certain type of token
can change owner, restrict creation or ownership of specific tokens to a fixed set of
eligible members, or set expiration dates after which some tokens may no longer be
exchanged. In other words, they could be used to prevent some unsound ownership
exchanges from taking place at all.

• External Regulation. These exist to ensure any entities represented by any EN
tokens are not abused outside the bounds of the EN. We refer to these regulations
as contractual terms, or just terms, and they may or may not be machine-readable.
For example, let us assume two EN members have exchanged one token representing
the right to a vehicle repair for another representing a promise of payment. At this
point, there is no way for the EN itself to determine if any vehicle is repaired
or any payment is made, as these events happen outside the computers of the
EN. This could be mitigated by ensuring the types referenced by the exchanged
tokens contain contractual terms, in the form of legal prose, honored by some legal
authority. As long as the finalized exchange itself counts as proof, an appeal could
be made to that authority to resolve any disputes.
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4.2 Implementation

While possible to implement an EN in many different ways, we were particularly inter-
ested in doing so such that the existing contractual paradigm could be preserved, as far
as reasonably possible. For this reason our implementation does not use any kind of
distributed consensus algorithm, and neither does it yet support code-as-contracts, even
if we define machine-executable verification functions, or tests, as part of the architecture
in Section 4.1. Concretely, the implementation is intended to mimic the way common
paper contracts and other forms of signed instruments are used, which are known only
to two or more parties until the event of a dispute, in which case those instruments are
revealed to a court of law or other adjudicator.

We begin the description of our implementation by giving an overview of its design,
including its user and application interfaces, after which we describe the data structure
it uses to construct nonrepudiable ledgers, and, finally, present a limited scenario that
our implementation can run.

Design Overview

Our system consists of a node both serving a web client and communicating with other
nodes, as depicted in Figure 5.4

Client

HTML CSS ES2015

Node

Server Peer

node.js ES2015

HTTP(S)WebSockets
HTTP(S)

Network

Figure 5: The general design of our EN implementation. Humans operate each Node using
a web browser Client. Every Node uses an internal Server to both provide its Client with
static HTTP(S) [23] resources and send runtime data via WebSockets [24]. Each Node also
contains a Peer module, which is used to communicate with the Peer modules of other Nodes
over HTTP(S). The design requires no central data repository or any centralization of control.

The business logic of both the node and the client it serves are programmed in the
TypeScript programming language [25], which compiles to ECMAScript 2015 [26], also
referred to as JavaScript (JS), before execution. The JS of the node is executed by the
node.js runtime [27]. The visual structure, styling of the client application are defined
using HTML [28] and CSS [29], respectively, and must be executed via a web browser
complying to the referenced standards.5

4 Available at https://github.com/emanuelpalm/en-signature-chains-poc. The paper describes commit
694e3a73a1fbae67b9c106d47bd5a1.

5We used these technologies and standards mostly because they are familiar to us. There are no
inherent reasons why these should be technically superior to any other particular sets of technologies.
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The client, shown in Figure 6, divides it user interface into three columns, (1) User
Registry, (2) Negotiation Service and (3) Exchange Ledger, which correspond to three
of the EN components. The first column lists trusted user identities, the second column
allows sending and accepting proposals to and from other users, while the third column
lists all known finalized ownership exchanges. A template token system is provided as
a form of naive DB component, which ensures that created tokens follow configurable
rules.

Figure 6: The three columns of the client user interface, behind a dialog in which a new proposal
is formulated. The formulated proposal is a request to a carrier to transport 300 components for
7200 SEK per component, while giving the carrier the option of choosing between two pick-up
dates. The screenshot is taken from the demo application in the implementation code repository.
See Footnote 4 on page 122 for details on how to access the code and instructions for running
the demo. The scenario it illustrates is described in Section 4.2.

While human users communicate with their nodes using web clients, the nodes them-
selves communicate with each other by sending HTTP(S) requests to the endpoints out-
lined in Table 1, which each node is expected to expose.

Table 1: HTTP(S) endpoints exposed by nodes via their Peer interfaces.

Method Path Description

POST /proposals Submit a signed exchange Proposal.

POST /acceptances Submit a signed and qualified proposal Acceptance.

POST /exchanges Share a known previously finalized Exchange.
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In particular, the node is designed such that if a sent proposal includes a token
containing a reference to a previous exchange, it will automatically send that exchange
before the proposal. This means that finalized exchanges can be distributed to third
parties as proof of something having been accepted. This is utilized in the example use
case in Section 4.2 by a carrier, allowing it to prove to its client that a delivery was
accepted by its recipient.

Our implementation exists to fulfill three functions, (1) to force us to confront and
reevaluate the EN and SC concepts during its development, (2) to confirm that our
concepts are complete enough to be implemented, as well as (3) to give use a tangible
artifact to demonstrate to industry experts in order to receive relevant feedback. None
of these three functions require having a production ready system, for which reason we
made some important delimitations to reduce implementation effort. For example, any
UR and DB data must be provided at node startup, and cannot be changed or added
to during runtime. Even though messages between peers are signed and verified cryp-
tographically against known users, no communication transports are encrypted. Client
users are not authenticated or authorized by their nodes. Finally, while HTTP endpoints
are provided for sending proposals, acceptances and exchanges, there are no such for
requesting exchanges, definitions, users or other relevant data.

Signature Chains

To ensure that finalized exchanges can be proven to have taken place, our implemen-
tation relies on data structures that use signatures and hashes in a way comparable to
blockchains. However, as they do not gather records in batches, we instead refer to them
by the name Signature Chains (SCs). Concretely, an SC consists of a chain of records,
each of which may refer to (1) a previous record and (2) a definition of relevance. Each
record is cryptographically signed by one or more attestors, in our case a proposer and
acceptor, and any references to records or definitions are the cryptographic hashes of the
data referred to [19]. By implication, a third party given a chain of records, with any
associated definitions, becomes able to verify that the records

1. indeed have been signed by their attestors,

2. were created in a certain order, and

3. always have referred to the provided definitions.

Rather than SCs being stored in a centralized or replicated repository, each possible
pair of EN members may maintain their own sets of chains, as depicted in Figure 7.
This leaves room for every such pair of members to maintain privacy, given that they
can agree on not sharing their mutual records with others. By implication, it also means
that both members of each pair can independently reveal any shared chain to any party
of interest, such as a court of law, partner or other party.
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In Signature Chain ENs, 
each possible member pair 
may maintain its own set of 
SCs. Each such potential set 
is here denoted by a line 
connecting two members.

Figure 7: The potential sets of SCs, or ledgers, in a six user EN.

To concretely implement the SC data structure, we amend the Proposal and Ac-
ceptance types as described in Figure 8.

proposer: ID
wants: Expression
gives: Expression

Proposal
«message»

definition: Hash?
predecessor: Hash?

proposal: Proposal
Acceptance

«message»

signature: Signature

signature: Signature

Now optionally refers to 
a definition, which 
identifies some or all of 
the wanted and given 
Token types. May also 
refer to the Exchange 
being the predecessor 
of the Proposal, and 
must contain the 
proposer's signature.

receiver: ID

Must now contain the 
signature of the receiver 
accepting the proposal.

Figure 8: Amended variants of messages first outlined in Figure 3.

As our particular implementation does not provide a DN component, but a simpler
template system assuming tokens are defined elsewhere, the definition field of all Pro-
posals is always empty. This limitation is not critical for demonstration purposes, as in
Section 4.2, as we can assume that the set of used templates, and their associated legal
interpretations, are known beforehand by all participants.

In the case of a fully implemented DB component being available, however, then all
definitions ought to refer to their subdefinitions via their hashes. This would guarantee
that those definitions cannot be modified without it being detectable. An example of a
SC with definition references is illustrated in Figure 9.
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Chain of Signed Records
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Different Types of Definitions

TypesProposal

Exchanges

Contracts Tests & Terms

Figure 9: An example SC. Arrows denote references by hash. Assuming that proposals and
exchanges are signed, any party trusting the identity of the signatures can verify that any as-
sociated definitions are not modified since the proposal or exchange was signed. This requires,
however, that the verifying party can access referenced exchanges and definitions.

SCs are created or extended through a procedure of six step, beginning at the point
where a Proposal is formulated by some party A that will subsequently be accepted by
its receiver B. We describe the steps in Figure 10 and below.

A B

ap(1) pq

(2)
(3)

(4)

ea
p ea

p (5)(6)

Figure 10: The six steps, taken by A and B, from the creation of a qualified proposal to its
acceptance and finalization. Circles denote artifact creation, solid arrows artifact transmission
and the dashed arrow an internal transition. Both A and B must cryptographically verify the
artifacts they receive.

1. A creates and signs the qualified Proposal (pq).

2. A sends pq to B.

3. B creates and signs the Acceptance (ap) from pq.

4. B sends ap to A.

5. B puts ap and its hash into an Exchange (epa).

6. A puts ap and its hash into an Exchange (epa).

While a benefit to this procedure may be its lack of complexity, it does have the
following potential weaknesses.
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• Acceptance asymmetry. A is unaware that B accepted and signed pq unless step
(4) is completed successfully. If B is malicious, it could perhaps be advantageous
for B to create ap while concealing it from A.

• Clock divergence. In certain scenarios, a pq may have to be accepted within a
certain time window. As each party has its own clock, there could be diverging
opinions on whether or not an acceptance (ap) is timely.

• Exchange malleability. While pq and ap are signed, epa is not. This gives room for
both A and B to record whatever private data they want to associate with ap in
epa, but it also means that if epa is distributed, any fields other than ap are malleable
without it being noticeable.

• Token duplicability. In cases where tokens needs to be transferable multiple times,
it becomes possible for a malicious party to transfer the same token to multiple
counter-parties without it being immediately detectable. As information only is
shared as strictly needed, it will seem to both as if they now become the legitimate
owners of the new token, which, for example, could be tied to the ownership of a
physical good.

All of these weaknesses can be countered, however, through different uses of trusted
third parties. And if trusting a single third party would be an issue, for reasons such
as concerns about trustworthiness, privacy or fault-tolerance, voting networks of third
parties could be a viable alternative.6 For a concrete example of how a single trusted
third party could be used, consider the procedure in Figure 11.

A B

(1)
(2)

(4)

ea'
p ea'

p (10)(9)

W (5)

(7) (8)
ap'

(3)

appq

(6)

Figure 11: A variant of the steps described in Figure 10. Here, a trusted third party W is
provided with the qualified proposal (pq) in step (3) and the acceptance (ap) in step (5). If ap
contains pq and seems to be valid, W creates and signs a′p in step (6) and then sends it to both
A and B.

A trusted third party (W ) could assert the timeliness of the acceptance (ap), ensure
both A and B receive the signed acceptance (a′p), as well as remember whether or not a
token part of a proposal has been transferred before.

6This is effectively what R3 Corda achieves via their notary pools [9] while preserving a significant
level of privacy, as described in Section 2.3.



128 Paper D

One or more parties being witnesses of an exchange could also have desirable con-
tractual implications. For example, an insurance agency being a witness, and thereby
be given the opportunity to ratify an exchange, could be used as a way of ensuring the
insurance agency remains commited to a prior insurance agreement. Another example
could be a situation in which some token is owned by multiple parties. All parties except
for the one initiating the transfer of the token could be called upon as witnesses to ensure
they all ratify it being exchanged.

The simplicity of the basic exchange finalization protocol, which we described in
Figure 10, means that it lends itself to many kinds of extensions. One example of such
an extended exchange finalization protocol is given in Figure 11, where a third party
ratifies the exchanges of two other parties. We recognize that many such protocols could
be identified for scenarios with different requirements on privacy, robustness, trust, and
so on. However, we leave their identification as a subject for future work.

Example Use Case

As our implementation was designed to demonstrate the EN and SC concepts, it comes
with a set of files for running an example use case.7 We here proceed to describe that
example scenario, as it gives another perspective on how our implementation is designed
to work. The example consists of six interactions between three partners, as described
below and in Figure 12, using the tokens in Figure 13.

Carrier Component SupplierFinal Assembly Plant

Component Order

Transport Booking

Transport Confirm.

Transport Paym. Req.

Component Payment Request

Manufacturing, Pick-Up & Transportation

1

2

3

4

5

6

Transport Complet.

Figure 12: The six steps of the example use case. Solid arrows represent sent proposals, while
dotted arrows represent sent proposal acceptances.

7See Footnote 4 on page 122 for a link to the source code repository, which also contains detailed
instructions for running the demo.
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type: "xct" / "xtt"
Token

data: "currency": "SEK"
"amount": Integer
"multiplier": Integer

type: "xco"
Token

data: "type": "X"
"units": Integer
"time of delivery": Date

type: "xtc"
Token

data: "type": "X"
"units": Integer
"time of delivery": Date

type: "xto"
Token

data: "transport": #xtc

type: "xcp" / "xtp"
Token

data: "payment": #xct / #xtt
"transport": #xto

type: "xtb"
Token

data: "type": "X"
"units": Integer

"time of delivery": Date
"time of pickup": Date

Component Order
Symbolizes the commitment of its giver to 
deliver a certain number of units of some 
component type at a certain date and time. 
The delivery address is assumed.

Tentative Payment
Represents the obligation of its giver to pay 
a certain amount in return for the 
completion of the task specified in the 
exchange the token was created.

Transport Booking
The giver of this token is bound to be able to 
accept a transport vehicle at a certain pick-
up date and time, which will be ready to 
transport a certain number of units to an 
implied destination at a specified delivery 
date and time.

Transport Confirmation
Represents the commitment of the giver of 
the token to receive a delivery of a certain 
number of units at a specified time of 
delivery.

Transport Completion
The giver of the token accepts that the 
delivery associated with the referenced 
transport confirmation has been completed.

Payment Request
The giver of the token accepts to pay, as 
specified in a referenced tentative payment, 
as compensation for a referenced transport 
completion.

Figure 13: Informal definitions of the token types used to facilitate the example use case, with
technical descriptions on the left and legal implications on the right. Two of the tokens exist in
two type variants each, useful only to allow our implementation determine how to automatically
populate certain data fields. Compare with the Token type definition in Figure 3.

The goal of the following interactions is to have certain components manufactured
and delivered from a Supplier (S), via a Carrier (C), to a Final Assembly Plant (A).

1. Component order. A sends a proposal to S, wanting a component order of 200
units, which are to be delivered at a certain date. In return, A offers a tentative
payment of 100 000 SEK per component.

2. Transport booking. S sends a proposal to C, wanting a transport booking for the
components and the delivery time requested in (1). In return, S offers a tentative
payment of 7 800 SEK per transported component.

3. Transport confirmation. C sends a proposal to A, in which C requests that A
confirms the transportation in (2). When accepted by A, C proceeds to also accept
the proposal in (2), and S then accepts the proposal in (1).
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4. Transport Completion. C sends another proposal to A, wanting A to confirm that
the transportation accepted in (3) has been completed, which is then accepted by
A.

5. Transport Payment Request. C then sends the exchange finalized in (4) together
with a proposal of payment to C, in which C refers to the transport completion in
(4) and the tentative payment in (2). S accepts.

6. Component Payment Request. S, which now knows that the transport has been
completed, sends a proposal of payment to A, which refers to the transport com-
pletion in (4) and the tentative payment in (1). A accepts.

While the scenario illustrates how ordering, transport and payments could be handled
in an industrial scenario, there are a few things we want to note.

• No actual payments were issued or executed by the EN used by the three parties,
even if several interactions related to money. The purpose of the EN architecture is
to facilitate digital changes to the rights and obligations between partners. It does
not move any concrete assets in and of itself, even if events in an EN could trigger
other systems to perform such functions. On the other hand, the signed exchanges
resulting from the example interactions should be useful as evidence in a court of
law, in the case of any party not meeting its obligations, such as by refusing to pay.

• The EN architecture only relays data that is directly related to the rights and
obligations of contractual partners. If other information would be of relevance,
such as tracker coordinates or digital twins, that would have to be sent via some
other system.

• The example most likely contains too few steps to be practical in a real-world
setting. Pick-up, quality checks or other significant interactions could likely be of
benefit to also negotiate about. The purpose, however, of the example use case is
demonstrate how the technology works and how it could be used, not necessarily
how it should be used.

5 Requirements Conformance

In Section 3.2, we listed requirements we believe to be key to meaningful contractual
interaction. Here, we qualitatively evaluate how an EN implementation based on SCs,
as described in Section 4, could facilitate those requirements. We also consider how R3
Corda [9] fulfill the same requirements,8 and end the section by identifying differences
between the Corda and SC EN systems. A summary of our analyses is outlined in Table
2.

8While making the same kind of analysis could be relevant also for other systems, such as Hyperledger
Fabric [8], we settle with considering only R3 Corda for two reasons, (1) as Corda uses the same general
approach to consensus as the SC implementation, it becomes relevant to clarify their differences, as well
as (2) for the sake of limiting the scope of the paper.
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Table 2: An overview of how our EN implementation based on SCs and R3 Corda fulfill the
requirements we list in Section 3.2. Parentheses are used signify functionality that can only be
supported if provided via an external means. We consider the differences between the systems
in Section 5.3.

SC EN R3 Corda

Provable acceptances Signatures & witnesses Signatures & notaries
Renegotiable terms Negotiation Service (External negotiation)
Effective adjudication (External adjudicator) (External adjudicator)
Consistent interpretation Definition Bank Code & legal prose
Trustworthy identification User Registry x.509 certificates
Interactional privacy Witnesses optional Notaries optional

5.1 Signature Chain Exchange Network (SC EN)

Here follows a list corresponding to that in Section 3.2, describing how each of those
requirements is fulfilled. As the EN architecture fulfill some of our requirements by
itself, we make note of which of the EN or SC concepts is realizing each fulfillment.

1. Provable acceptances. The SC data structure facilitates provable acceptances by
requiring each such acceptance to be cryptographically signed [19] by its proposer
and acceptor. Additional parties can also add their signatures or act as witnesses,
given a suitable finalization protocol, as described in Section 4.2. If an acceptance
includes hashes of a related earlier acceptance or contractual definitions, no party
will be able to deny the history of the acceptance or the commitments associated
with it, respectively.

2. Renegotiable terms. The NS component of each EN facilitates meaningful negoti-
ation only when there are mutually known token definitions that can be used to
formulate proposals. As definitions dictate what can be negotiated about, there
could, theoretically, be room for negotiating about further definitions, the creation
of new contracts, the amendments of existing contracts, as well as contractual ex-
ceptions. Apart from the existence of useful definitions, however, the extent to
which agreements can be renegotiated will also depend on the flexibility of the
agents driving the negotiations, which could be anything from humans to simpler
software.

3. Effective adjudication. The EN architecture leaves room for using machine-executable
tests, which could be used to prevent some unsound exchanges from taking place.
Neither ENs or SCs are, however, able to correct any contractual misbehavior after
it has occurred, which we discuss further in Section 6.3. That being said, the SC
data structure is designed to prove that the agreements it records have taken place.
That proof, which is based on the cryptographic signatures of well-known entities
and immutable references to contractual definitions, should be useful as evidence
in traditional courts of law or to private arbitration firms, which must be able to
provide such correction. It remains to be seen, however, if things like SCs will be
considered by such adjudicators.
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4. Consistent interpretation. Every EN must provide a DB component, which is in-
tended to maintain definitions of sufficiently rigorous interpretation for negotiation
to be practically possible. No particular shape or format is required for any such
definitions, even though it may be relevant to support machine-executable vali-
dation code and conventional legal prose,9 as it would enable automatic proposal
verification and provide opportunity for adjudication, respectively.

5. Trustworthy identification. This problem is meant to be solved by the UR compo-
nent of all ENs. However, the EN architecture does not explicitly specify how it
is to be facilitated. In our SC concept implementation, we used data taken from
x.509 certificates [22] to identify parties, which we then manually provided to each
node. An implementation for production use would likely need to support distri-
bution of certificates at runtime, handle parties transitioning to new certificates,
as well as being able to assess the likelihood of any certificates being compromised.
Whether public key infrastructure [22] or some other technology is most suitable
for distributing certificates, of any relevant kind, remains to be determined.

6. Interactional privacy. We understand complete privacy to be the situation in which
only those parties that must know a fact do have direct or indirect knowledge of
it. As the EN architecture in itself does not regulate how proposals are relayed,
it cannot be decided whether or not it facilitates privacy. Technology such as
transport layer security [31] could be used by SC implementations, however, to
conceal data in-transit between parties. Also, since using SCs does not require
a distributed consensus algorithm, there is not necessarily any voting procedure
during which any details about proposals or exchanges could be seen by third
parties. As long as information is not leaked intentionally, higher degrees of privacy
should be possible.

5.2 R3 Corda

Here follows another list corresponding to that in Section 3.2, this time describing how
the requirements outlined there are fulfilled by R3 Corda [9].

1. Provable acceptances. In R3 Corda, each contractual interaction results in the
creation of a transaction, which contains a list of input state objects, commands to
apply to those objects, any resulting output state objects, apart from other details
such as designated notaries. Each such transaction proves its validity by including
at least the signature of its issuer. Depending on the code-as-contracts and flows
regulating the transaction, it may also include additional signatures, which could
facilitate explicit acceptance of whatever intent is encoded in a given transaction.
Pools of notary nodes, which we describe briefly in Section 2.3, can also be used as
a form of witnesses.

9If common legal prose in digital cooperation systems becomes accepted by most relevant legal insti-
tutions and other adjudication instances, it may become relevant to also structure that legal prose in a
machine-readable way. It could, for example, enable increased levels of contractual automation. OASIS
LegalRuleML [30] is one example of such a document structure.
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2. Renegotiable terms. Corda is not a negotiation system, it is a system for maintaining
and updating replicated state machines. In other words, it does not provide any
primitives explicitly designed for making or accepting proposals. This implies that
the details of any collaboration must to be negotiated outside Corda itself, including
how and what can be negotiated about within the confines of a given collaboration.
That being said, there could likely be room for implementing a general-purpose
negotiation system on top of the primitives Corda does provide.10

3. Effective adjudication. The fact that Corda maintains a replicated state machine
means that it leaves plenty of opportunity for programmatically validating states
and state changes, which is useful for preventing unsound state transitions from
taking place. However, Corda does not in and of itself provide any direct means
of correcting contractual misbehavior that cannot be prevented. Rather it depends
on its code-as-contracts, transactions, immutably referenced legal prose, and any
other artifacts, to be accepted as evidence by a court of law or other adjudicator.

4. Consistent interpretation. In order to guarantee that code-as-contracts and other
machine-readable artifacts are interpreted consistently, Corda comes with its own
machine language interpreter. It also leaves room for its transactions to refer to
legal prose and other forms of attachments. If such legal prose is formulated in
accordance with the norms of some well-established legal tradition, it should be
able to facilitate meaningful collaboration.

5. Trustworthy identification. To guarantee non-repudiation and unambiguous asso-
ciation of transactions with legal entities, Corda employs x.509 certificates [22].
Further, it “assumes [the existence of] an identity infrastructure between the par-
ticipants in the network but makes no assumption as to its sophistication or mode
of operation” [9]. However, if participating in the global Corda network, a network
maintained by the R3 organization, the use of a custom infrastructure created by
R3 is mandatory.

6. Interactional privacy. R3 Corda guarantees privacy by encrypting messages in-
transit between parties. Notary pools, when used, are only provided with hashes
of state objects, as described briefly in Section 2.3, which means that the contents
of any considered objects are not accessible to the notaries in any given pool.

10In [20], we consider the possibility of building an Exchange Network on top of a blockchain system
such as Hyperledger Fabric [8]. It is not inconceivable that also R3 Corda could be built upon to
facilitate general-purpose negotiation, perhaps only using the code-as-contracts capabilities provided
by the system. However, providing a programming language and execution runtime is not the same as
providing a concrete feature, for which reason we do not consider Corda to directly facilitate renegotiable
terms.
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5.3 Comparison of SC EN and R3 Corda

Having presented how an SC EN implementation and R3 Corda could fulfill our require-
ments, it should be apparent that these two systems have significant similarities. For
instance,

1. EN SC witnesses serve a role similar to Corda notaries ;

2. the EN DB component could be designed to hold machine-executable verification
code and legal prose, which is also provided by Corda; and

3. the EN UR component could be implemented using x.509 certificates and Public
Key Infrastructure [22], a variant of which is employed by Corda.

What we consider to be the primary distinction between the two systems, however,
is the domain models they employ. An EN SC provides a general-purpose negotiation
protocol as its most significant coordination tool. Each interaction via that protocol
is, conceptually, an attempt to change the state of rights and obligations in a group of
collaborating parties. In R3 Corda, on the other hand, the foundational concept is that
of cooperating parties jointly maintaining replicated state machines. Consequently, each
Corda interaction is an attempt to change the state of such a machine via the invocation
of a valid state transition. While there may be ways to model rights and obligations in
terms of state machines, as we discuss in Section 6.7, we observe that the choice of the
EN domain model has the following consequences.

1. States can be implicit. In a Replicated State Machine (RSM) system, such as
Corda, any maintained state machines must always be in well-defined states. An
EN, on the other hand, is not strictly required to know in and of itself what the
current rights and obligations of each cooperating party is, given that the parties
can determine it some other way. This means that an EN can operate without any
code-as-contracts at all, given that legal prose, or whatever means of keeping track
of rights and obligations is used, can be referenced during negotiation.

2. The possible state space can be unbounded. As the current state of rights and
obligations can be tied to any external artifacts, such as traditional paper contracts,
no collaborating EN members are forced to assume that they know the full extent
of the possible state space. This leaves room for making contractual amendments
and exceptions as needed, rather than requiring that every possible exceptional
scenario be predicted before collaboration starts or state machines to be replaced
or extended after deployment.

3. Negotiations can be about negotiations. In Corda, the details about a collaboration,
such as what flows, state objects and legal prose to use, must be negotiated outside
the Corda system. In an EN, however, every interaction is negotiational, which
means that, given the right set of definitions, an EN system could be used to
negotiate about the details of new collaborations.
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4. Rights and obligations must be explicitly accepted. In RSM systems, like Corda,
transactions are only strictly required to be approved by their issuers, even though
additional approvals can be demanded. This can be used to design collaborations
where individual parties can change the rights or obligations of other parties without
their explicit consent. An example of such a transaction could be a transfer of
money, which would not have to be accepted by its receiver. While money may be
commonly considered a universal good, even owning such may entail obligations
not desired by its receiver. In an EN system, every change to a party’s rights or
obligations must be explicitly accepted by that party.

6 Discussion

We have now considered what contractual cooperation is, key requirements for it to be
meaningful, the EN architecture and SC implementation, as well as how our implemen-
tation and R3 Corda fulfill our requirements. Here, we discuss the wider implications
and weaknesses of our contributions.

6.1 A Minimum-Viable Integration Strategy

While we have described an EN SC implementation and how it ought to deviate less than
the state-of-the art from the traditional contractual paradigm, we have not presented
any strategy for using it to digitize any existing business collaborations. We do believe,
however, that the following five steps could be a suitable starting-point for finding a
minimum-viable integration approach.

1. Each party of the collaboration in question installs and configures an EN SC soft-
ware on a server it manages.

2. Cryptographic certificates are generated by each party, and uploaded to the UR of
every server.

3. Legal documents are scanned, hashed and uploaded to the DB of each server.

4. Key interactions defined by the legal documents are identified, and tokens referring
to them are specified.

5. A new legal document is signed by each participant, containing their cryptographic
certificates.

Essentially, finalized EN exchanges are used as digital receipts referring to the terms
of existing paper contracts. If assuming that the EN SC software provides a graphical
user interface, no further technical integration would be strictly required. Each party
would be able to independently automate any of the interactions in which it takes part.
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6.2 The Centrality of Negotiation

In Section 3, we assumed negotiation to be the primary activity of interacting collabora-
tors. As this assumption has driven the formulation of the Exchange Network architec-
ture, the utility of the architecture is contingent on the validity of that assumption. All
other comparable systems we know of, however, rather assume that collaborations can
be modeled as parties updating replicated state machines using complex programming
languages. This could be regarded as requiring weaker assumptions, as the programming
languages of these systems can be used for building other kinds of protocols. If our as-
sumption is correct about the centrality of negotiation, the additional capabilities and
complexity of the state machine systems may be of little relevance in many cases.

6.3 The Prospect of Machine Adjudication

In this paper, we identify distributed consensus algorithms and code-as-contracts as pri-
mary obstacles to compatibility with existing adjudicators, such as national courts of law.
Those two technologies are, however, what many envision will allow trusted middle-men,
among which courts of law are a primary example, to be fully circumvented. However,
apart form disrupting current practices, as we already noted, the concrete systems cur-
rently using these technologies do have some additional shortcomings. In particular, they
are limited in

1. what they can consider as evidence,

2. their power over parties deemed at fault, as well as

3. their ability to take the wider context into account.

In systems like Bitcoin [1] or Ethereum [7], the only unbiased evidence available is
signed transactions, the only available punishment is refusing to append transactions to
the maintained ledger, and no given data will be considered in terms of its original domain
or context. Taken together, this means that these systems are unable to identify or
mitigate transactions sent to fraudulent users, for example, even if they are able to detect
double-spending, overspending, and so on. Strides of advancement in AI technologies,
in areas such as trust assessment, faction mapping and computational ethics, would be
required in order to make computer systems approach the capabilities of present day
human institutions. For this reason, we assume that traditional adjudicators will remain
indispensable for many kinds of use cases in the foreseeable future, given that they adapt
to the increasingly digital nature of the disputes they will have to mediate. That being
said, however, there may be a plethora of relevant use cases that could become viable
with only incremental improvements to existing blockhain systems, which would allow
additional trusted middle-men to be circumvented.
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6.4 The Economics of System Participation

It seems to us that participating in a digital collaboration system always will require (1)
installing, configuring and connecting a node to a network; (2) reliably identifying the
user identities of any relevant counter-parties; as well as (3) formulating and distributing
contractual definitions. While we noted in Section 3.2 that qualitatively reasoning about
the costs of such participation is difficult, we do believe that work to reduce both its
costs and its complexity is paramount to ensure the real-world utility of these systems.

6.5 Consensus Speed and Business Impact

In Section 1, we claimed that the performance of distributed consensus algorithms could
impact business processes in significant ways. While we showed how this the case for one
kind of application in Section 2.1, we expect performance sensitivity to vary greatly from
use case to use case. In other words, the value of fast consensus depends on the scenario.

6.6 Risks of Comparing Concepts to Systems

In Section 5.3, we compare our SC EN design with R3 Corda. The former is a concept,
proven only by a limited implementation, while the latter is a relatively complete system.
When comparing concepts to reality, there is always a risk of idealizing the concept, as
its concrete properties cannot be evaluated directly. In order to avoid this, we regard the
R3 Corda system as an attempt to realize a concept, and compare the SC EN with that
concept instead. Concretely, we base our conclusions primarily on the Corda white-paper
[9], rather than technical documentation or source code. That comes with another risk,
however, which is relying on a document that, at the time of writing, is about three years
old and, therefore, could be outdated. It is not inconceivable that the project has made
significant advances to their concept since then, but without formalizing them via a new
paper. While the comparison represents our best effort at being objective, we cannot
completely rule out any bias introduced by our misunderstanding the Corda white-paper
or basing our conclusions on out-dated claims.

6.7 Rights and Obligations as State Machines

Even though we present the Exchange Network concept as facilitating negotiation about
token ownership, via the use of an abstract message protocol, there is nothing preventing
that a computational model be superimposed on that protocol. Concretely, tokens refer
to types, which in turn refer to tests and terms, as described in Section 4. One could
regard a test as an invariant of a type system, a term as a function body, a type as a
full function declaration, and a token as a function invocation. As tokens have room
for arbitrary data items, they could even be said to include function arguments. If
taking this perspective, which we do briefly in Section 5.3, finalized negotiations result
in functions updating a state machine of rights and obligations. Formally defining such a
state machine and comparing it to the state-of-the-art is left as a topic for future research.
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7 Conclusions

In this paper, we make the case that distributed consensus algorithms and code-as-
contracts disrupt common business practices. We also claim that those disruptors can
be replaced by non-mediated message passing and a system of negotiated token ex-
changes. By using cryptographic signatures and hash pointers, akin to how they are
used in R3 Corda [9], we ensure messages sent directly between two peers can be proved
to authentic later to third parties. By substituting the prevailing finite state machine
code-as-contracts model with one of negotiations about ownership exchanges, we change
the primary concern of the model from function invocations and state transitions to
exchanges of rights and obligations.

We believe that already existing professionals, such as procurement engineers, legal
experts and adjudicators, will be able to fruitfully apply the kind of technology we propose
with little to no training, given the right kind of supporting software exists. The use of
voting to ratify interactions is rare in conventional kinds of collaboration, and writing
software is far removed from what most relevant kinds of professionals are accustomed
to. However, digital signatures, ownership statements, as well as the other primitives our
system design provides, should be perceived as more familiar and, therefore, require less
training, as well as requiring fewer adaptations to existing business norms and practices.
If the assumptions we make are correct, our approach lowers the barriers to adoption of
distributed ledger technologies for businesses, legal institutions and others in comparison
to state-of-the-art solutions, such as Hyperledger Fabric [8] or R3 Corda [9].

That being said, there might be compelling use cases that cannot be facilitated by
our approach. For example, solutions such as Ethereum [7] are able to facilitate code-
controlled agents via a public and global process reminiscent of voting, which can be used
to circumvent traditional third parties in certain situations. Our current understanding
is that nothing similar could be achieved with the system design we propose, at least
without extending it to also support defining the behavior of and facilitating such agents.
However, the practical utility of such agents has proven very limited, as we discuss in
Section 6.3, which means that they cannot replace most interesting third parties to an
adequate degree, such as inspection firms, courts of law and so on.

In Section 3.1, we characterize cooperation as being the process of collaborating parties
continuously renegotiating their current sets of rights and obligations, while never being
absolutely sure about the aims and incentives of their counter-parties. If nothing else,
we believe this paper should establish that digital cooperation systems must be able to
represent the contentious nature of this process to remain useful over time.
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