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Abstract. Periodic scheduling problems (PSP) are frequently found in a wide
range of applications. In these problems, we schedule a set of tasks on a set of
machines in time, where each task is to be executed repeatedly with a given pe-
riod. The tasks are assigned to machines, and at any moment, at most one task can
be processed by a given machine. Since no existing works address the complexity
of PSPs with precedence relations, we consider the most basic PSP with chains
and end-to-end latency constraints given in the number of periods. We define a
degeneracy of a chain as the number of broken precedence relations within the
time window of one period. We address the general problem of finding a sched-
ule with the minimum total degeneracy of all chains. We prove that this PSP is
strongly NP-hard even when restricted to unit processing times, a common pe-
riod, and 16 machines, by a reduction from the job shop scheduling problem.
Finally, we propose a local search heuristic to solve the general PSP and present
its experimental evaluation.

1 Introduction

Periodic scheduling problems (PSPs) are frequently found in a wide range of applica-
tions, including communications [16], maintenance [17], production [1], avionics [7],
and automotive [5]. A control loop is a typical example of an application that requires
periodic data transmission from sensors over control units and gateways to actuators.
The result depends not only on a logically correct computation but also on the end-to-
end latency measured from the moment when the sensor acquires a physical value to
the moment when the actuator performs its action. Due to the periodic nature of the
problem, the end-to-end latency is typically expressed in a number of periods [15].

In a PSP, we are given a set of tasks and a set of machines. Each task has a process-
ing time p and is to be executed repeatedly with a given period T on a (given) machine.
The goal is to schedule the tasks in time so that at any given moment, at most one task
is processed by each machine, and the periodical nature of the tasks is satisfied. A PSP
can be either preemptive or non-preemptive, when an execution of a task can or cannot
be preempted by the execution of another task, respectively. In this work, we deal with
the non-preemptive version of the PSP.

Many works have addressed the complexity of non-preemptive PSPs. Jeffay et al.
in [10] address a PSP on a single machine with arbitrary release dates and deadlines
equal to one period from the corresponding release dates, where the release date is the
earliest time a task can start in its period and the deadline is the latest time it must
complete. In the three-field Graham notation α|β|γ introduced in [8], where the α field
characterizes the resources, the β field reflects properties of tasks, and the γ field con-
tains the criterion, this problem is denoted as 1|Ti, ri, di = ri + Ti|−. The authors
prove that this problem is strongly NP-hard by a reduction from the 3-Partition prob-
lem. However, the proof relies on the different release dates of the tasks. Furthermore,
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the case of the harmonic period set, when larger periods are divisible by smaller peri-
ods, seems to be an easier problem, since there are efficient heuristics to solve it (e.g.,
in [4]). However, Cai et al. in [3] strengthened the result of [10] by proving strong NP-
hardness of the PSP 1|Tharmi , di = Ti|− with zero release dates and harmonic periods.
Later, Nawrocki et al. in [14] prove that this complexity result holds even if the ratio
between the periods is a power of 2, i.e., for 1|T pow2

i , di = Ti|−.
A PSP with a zero jitter requirement (also known as strictly or perfectly periodic,

where the position of a task within a period is the same in all periods) is widely as-
sumed ([4], [6]) since a non-zero jitter represents a disturbance to control systems.
Korst et al. in [12] show that the PSP with zero jitter requirements on a single machine,
1|Ti, jiti = 0|−, is strongly NP-hard. Moreover, the same problem with unit process-
ing times, 1|Ti, jiti = 0, pi = 1|−, is shown to be NP-hard by Bar-Noy et al. [1] by
the reduction from the graph coloring problem. Jacobs et al. in [9] strengthen this re-
sult by proving that this PSP is strongly NP-hard. As a matter of fact, even deciding
whether a single task can be added to the set of already scheduled tasks for this PSP is
NP-complete, since it is the problem of computing simultaneous incongruences.

There are no results on the complexity of non-preemptive PSPs with precedence re-
lations. Therefore, in this paper, we focus on a PSP with chains of precedence relations,
i.e., a task can only be scheduled after the completion of its predecessor unless it is the
first task in the chain. End-to-end latency of a chain is the time from the start time of
its first task to the completion time of its last task. We define the degeneracy of a chain
as its end-to-end latency divided by its period. Alternatively, it is the number of broken
precedence relations within the time window of one period.

We consider a general PSPgen , PD|Tharmi , jiti = 0, chains|∑ δ, where tasks with
harmonic periods and zero jitter requirements are scheduled on multiple dedicated ma-
chines (i.e., assignment of tasks to machines is given) so that the total degeneracy of
all chains is minimized. Furthermore, we address the complexity of a special case of
PSPgen called PSPcom , PD16|Ti = T, jiti = 0, pi = 1, chains, δl = 0|−, where tasks
with a common period and unit processing times are scheduled on 16 machines, and
chains are 0-degenerated (i.e., all precedence relations are satisfied within one period).

The main three contributions of this paper are: 1) We propose a novel formula-
tion of a PSP with chains of precedence constraints called PSPgen based on chains
degeneracy. The degeneracy offers a coarser alternative to the widely used end-to-end
latency and may be a more suitable metric for some real-world problems. 2) We es-
tablish that PSPgen is strongly NP-hard even when restricted to unit execution times,
common period, and 16 machines by a reduction from the job shop scheduling prob-
lem J3 | pi = 1 | Cmax. This problem is called PSPcom and denoted as PD16|Ti =
T, jiti = 0, pi = 1, chains, δs = 0|−. 3) We provide a local search heuristic algorithm
that solves PSPgen . Moreover, we experimentally demonstrate the soundness of our al-
gorithm and show that it can solve 92% of our instances (with up to 9 000 of tasks) in
a few minutes on a desktop computer, and the provably optimal solution is found for
more than 75% instances.

2 Problem Description

In this section, we present a general problem PSPgen considered in this work. We first
introduce non-collision constraints and then the optimization criterion based on how
well the precedence constraints are satisfied within one period. Finally, we construc-
tively prove that the existence of a solution satisfying the non-collision constraints is
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equivalent to the existence of the solution satisfying both non-collision and precedence
constraints.

2.1 Problem Statement

We are given a set of tasks T = {τ1, . . . , τn} and a set of machinesM = {µ1, . . . , µ|M|}.
Each task τi has a processing time p(τi) ∈ N∗ and executes repeatedly with a given pe-
riod T (τi) ∈ N∗. Here, N∗ is a set of natural numbers without zero and N0 is a set of
natural numbers with zero. Each task τi is also assigned to machine m(τi) ∈ M, on
which it must be executed.

Our goal is to find a schedule, which is a function s : T → N0 that assigns a
start time s(τi) to each task τi. The task τi is then executed every T (τi) units of time,
i.e., with zero jitter; its k-th execution (for k ∈ N0) spans the interval [s(τi) + k ·
T (τi), s(τi) + p(τi) + k · T (τi)). Let R(τi) denote the union of all such intervals for
task τi.

A schedule s has no collisions if there is at most one task executed on each machine
at any given moment, that is:

R(τi) ∩R(τj) = ∅, ∀ i 6= j : m(τi) = m(τj) (1)

Korst et al. [11] have shown that for zero-jitter case, Equation (1) is equivalent to

p(τi) ≤ (s(τj)− s(τi)) mod gi,j ≤ gi,j − p(τj), (2)

where gi,j = gcd(T (τi), T (τj)).
There are precedence constrains in the form of task chains. Let C = {C1, . . . , Ck}

be a partition of T into pairwise disjoint ordered sets C1, . . . , Ck such that in each set,
all tasks have the same period.〈1〉 Each of these sets is called a (precedence) chain. The
r-th task of the c-th chain is denoted by Crc (for r ∈ {1, . . . , |Cc|}). We call Cr−1c and
Cr+1
c (if they exist) predecessor and successor of Crc . Tasks without a predecessor are

called root tasks. Note that formally, Crc ∈ T .
A schedule s satisfies precedence relations, if

s(Crc ) ≥ s(Cr−1c ) + p(Cr−1c ), ∀Cc ∈ C, r = 2, . . . , |Cc| (3)

that is, each task starts only after its predecessor finishes execution. Given that all tasks
in a chain have the same period, all further executions of the chain are also ordered
correctly.

The end-to-end latency L(Cc) of a chainCc is the distance from the start time of the
first task to the completion time of the last task in the chain as given by Equation (4).
Then, the degeneracy δs(Cc) with respect to schedule s is defined in Equation (5).

L(Cc) = s(C |Cc|
c ) + p(C |Cc|

c )− s(C1
c ), (4)

δs(Cc) =

⌈
L(Cc)

T (C1
c )

⌉
− 1. (5)

In other words, a chain degeneracy is the number of crossed relative period bound-
aries, with the first period starting at the start time of the first task in the chain. For the

〈1〉 On the other hand, two tasks with equal period are not necessarily in the same Cc
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(a) Chains of precedence relations C1, C2, C3, and C4.
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(b) An example schedule with degeneracies δs(C1) = 2, δs(C2) = 0, δs(C3) = 1, and
δs(C4) = 0. Solid vertical lines mark absolute period boundaries, whereas bold dashed
lines depict relative period boundaries for chain C4.

Fig. 1: A periodic scheduling problem with an example solution. There are four chains: C1 =
(τ1, τ2, τ3, τ4, τ5), C2 = (τ6, τ7, τ8, τ9), C3 = (τ10, τ11, τ12, τ13), and C4 = (τ14, τ15) with
periods 14, 28, 14, and 28 time units, respectively. The task assignments are m(τ3) = m(τ5) =
m(τ6) = m(τ7) = m(τ8) = m(τ12) = m(τ15) = µ1 and m(τ1) = m(τ2) = m(τ4) =
m(τ9) = m(τ10) = m(τ11) = m(τ13) = m(τ14) = µ2, the processing times are 2 except for
p(τ5) = p(τ7) = 4.

example in Figure 1, the degeneracy of chain C1 is 2, since its first task C1
1 = τ1 starts

at 0 and crosses its relative period boundary (in this case coinciding with its absolute
period boundary) 2 times. On the other hand, although C4 crosses its absolute period
boundary at time 28, its degeneracy equals 0, since its relative period boundary is at
time 10 + 28 = 38.

The degeneracy of a schedule δ(s) is then defined as:

δ(s) =

{∑
Cc∈C δs(Cc) if s is feasible,

+∞ otherwise.

We also say a schedule with degeneracy k is k-degenerated. Note that by this definition,
the minimum possible degeneracy is zero. In this case, its end-to-end latency does not
exceed the length of chain’s period.

With the definitions provided, PSPgen is: given a description of tasks and prece-
dence chains, find a schedule with minimal degeneracy. Formally, find

argmin
s : T →N0

δ(s), (6)

such that non-collision (1) and precedence (3) constraints hold. In the three-field nota-
tion, PSPgen is denoted as PD|Tharmi , jiti = 0, chains|∑ δ.
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2.2 Equivalence Proof

We show that if there is a schedule satisfying non-collision constraints for PSPgen , it is
possible to modify it to also satisfy precedence constraints. We actually formulate this
in a stronger form, which we use later in Section 3:

Lemma 1. Let s be a schedule satisfying (1), and let τ? be a fixed root task. Then there
exists a schedule s′ satisfying both (1) and (3) such that s′(τ?) = 0 and s′(τ) ≤ T (τ)
for all other root tasks τ. Moreover, if s already satisfies (3), then δ(s′) ≤ δ(s).

Proof. We define s′′ as s moved in time so that the start time of the chosen root task τ?
is zero:

s′′(τi) = s(τi)− s(τ?).
Schedule s′′ satisfies non-collision constraint (2) since the move does not change rela-
tive positions of start times of the tasks. However, some s′′(τi) may be negative since
τ? may not be a task with the minimum start time in s. We may fix that by moving each
task by a suitable multiple of its period to the right in time. Nevertheless, precedence
constraint (3) may still be violated, and therefore we fix both of these issues simultane-
ously as described in the following paragraph.

For τi ∈ T , t0 ∈ N0, let shift(τi, t0) be a minimum value t = s′′(τi) + k · T (τi)
(where k ∈ Z) such that t ≥ t0. We construct s′ chain by chain, traversing each chain
in the order of precedences. Given a chain Cc, we set s′(C1

c ) = shift(C1
c , 0). For each

subsequent task Crc , we set s′(Crc ) = shift(Crc , s
′(Cr−1c )+p(Cr−1c )). That is, the shift

operation guarantees that each task starts at the earliest time after its predecessor fin-
ishes and do not collide with other tasks. This automatically ensures that the precedence
constraint holds for s′.

With this construction, s′(τi) mod T (τi) = s′′(τi) mod T (τi) for each τi, which
means s′ satisfies non-collision constraint (1) due to Constraint (2).

Finally, since τ? is a root task, s′(τ?) = shift(τ?, 0) = 0. For all other root tasks τ,
s′(τ) < T (τ) by the definition of shift. Assume s satisfies precedence constraints (3)
and observe that δ(s′′) = δ(s). For each Cc, δs′(Cc) ≤ δs′′(Cc), since the tasks are
scheduled as close as possible. Thus, δ(s′) ≤ δ(s′′) = δ(s).

An example of the result of this constructive proof can be seen in Figure 1(b), where
for chain C1, an original schedule s can be s(τ1) = 0, s(τ2) = 6, s(τ3) = 4, s(τ4) =
2, s(τ5) = 8, and a constructed schedule s′ is s′(τ1) = 0, s′(τ2) = 6, s′(τ3) =
18, s′(τ4) = 30, and s′(τ5) = 36.

3 Problem Complexity

In this section, we prove that even a less general version of PSPgen is strongly NP-
hard by a polynomial transformation from a special version of the job shop scheduling
problem.

3.1 PSPcom

The proof of NP-hardness will be carried out on a restricted variant of PSPgen called
PSPcom . This is a decision problem based on PSPgen with the following modifications:
the number of machines is at most 16, all tasks have unit processing time and a common
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period TH , and the problem is to decide whether there exists a 0-degenerated schedule.
Thus, it is denoted as PD16|Ti = T, jiti = 0, pi = 1, chains, δl = 0|− in the three-
field notation. Note that (strong) NP-hardness of PSPcom implies (strong) NP-hardness
of PSPgen since the latter is more general.

Definition 1. PSPcom is defined by a 4-tuple (T ,M, C, TH) consisting of the task set,
T , machine set,M, chain set, C, and the common period TH . The problem is to decide
if there exists a feasible schedule s such that precedence constraint (3), non-collision
constraint (7), and 0-degeneracy constraint (8) hold.

s(τi) mod TH 6= s(τj) mod TH , ∀ i 6= j : m(τi) = m(τj) (7)

s(Ckc )− s(C1
c ) < TH , ∀Cc ∈ C. (8)

Due to unit processing times, non-collision constraint (1) resulted in Constraint (7) and
0-degeneracy constraint (8) is simply a constraint on chains’ end-to-end latency (4).

Finally, a schedule of PSPcom is feasible if it satisfies precedence constraint (3),
non-collision constraint (7), and 0-degeneracy constraint (8).

3.2 Job Shop Scheduling Problem JS3

We prove NP-hardness of PSPcom by reduction from a specific variant of the job shop
scheduling problem JS3 denoted in the three-field notation as J3 | pi = 1 | Cmax.
Thus, the tasks with unit processing times are scheduled on three machines so that
the makespan (i.e., the completion time of the latest task) is minimal. We formulate it
briefly in the following paragraphs.

Definition 2. JS3 is defined by a 4-tuple (T̂ ,M̂, Ĉ, L) consisting of the task set, T̂ =

{τ̂1, . . . , τ̂n̂}, machine set, M̂ = {µ̂1, µ̂2, µ̂3}, chain set, Ĉ = {Ĉ1, . . . , Ĉk̂}, and the
maximum makespan L. The problem is to decide if there exist schedule s such that non-
collision constraint (1) and precedence constraint (3) (with s substituted for ŝ, τi for τ̂i,
and similarly for other variables) such that makespan constraint (9) holds.

max
τ̂i∈T̂

{ŝ(τ̂i) + p̂(τ̂i)} − min
τ̂i∈T̂

{ŝ(τ̂i)} ≤ L, (9)

The definitions of the task set, machine set, and chain set are the same as those of
PSPcom . However, the tasks are not periodic. Therefore, 0-degeneracy constraint states
that the time elapsed between the first task starting and the last task finishing among all
tasks must be at most L.

Lenstra et al. have shown [13] that this problem is strongly NP-hard.

3.3 Naive Incomplete Reduction

We show that PSPcom (and, therefore, PSPgen ) is strongly NP-hard by constructing a
polynomial reduction from JS3 to PSPcom .

An obvious, but incorrect attempt at the reduction is: given an arbitrary JS3 instance
of Î = (Ĉ,M̂, Ĉ, L), we create one PSPcom task for each JS3 task: T = { τi | τ̂i ∈ T̂ },
and similarlyM = {µi | µ̂i ∈ M̂}. We also define C = {C1, . . . , Ck }, where k = k̂

and Ci = Ĉi. At last, for each τi ∈ T we define p(τi) = 1 and T (τi) = TH = L.
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Unlike PSPcom , which imposes the time limit TH on time elapsed between the first
task starting and the last task finishing for each chain separately, JS3 requires L to be
a global limit for tasks among all chains. Thus, some solutions feasible for PSPcom are
infeasible for JS3. For the example in Figure 1(b), the schedule for chains C2 and C4

with period TH = 28 is feasible for PSPcom , but not feasible for JS3 due to makespan
constraint (9). Although both chains individually span over less than 28 time units (C2

from 0 to 26 and C4 from 10 to 36), together, they run from time 0 to time 36, which is
more than the corresponding makespan value of L = 28. Thus, the two conditions are
equivalent only if we ensure that all chains start at the same time. We focus on that in
the following subsections.

3.4 Anchoring Chains

We allocate new machines, tasks, and chains to enforce a particular configuration of the
schedule. By introducing several “dense” chains (i.e., chains with the number of tasks
equal to the hyper-period), we make all chains start at the same time. To simplify the
analysis, we limit ourselves to the following subclass of schedules.

Definition 3. Let τ be a root task. A schedule s is τ-initial, if s(τ) = 0, and s(τ ′) < TH
for all other root tasks τ ′. A schedule s is initial if it is τ-initial for some task τ.

Without loss of generality, we may consider only τ-initial schedules: Lemma 1 guar-
antees that if the instance has a feasible schedule, it also has a τ-initial feasible schedule.
The converse is true since τ-initial feasible schedule is a feasible schedule by definition.

To make the reduction in Section 3.3 complete, we formulate and prove Lemma 2.
It states that for any PSPcom instance, except for special cases, we can create another
instance that is feasible if and only if there exists a schedule for the initial instance
satisfying the makespan constraint in job shop scheduling problem.

Lemma 2. Given a PSPcom instance I = (T ,M, C, TH) with M = {µ1, µ2, µ3},
|C| > 1 and TH > 2, it is possible to create a PSPcom instance I ′ such that I ′ is
feasible if and only if

∃s, a feasible schedule of I, such that
∀τi ∈ T : s(τi) + p(τi) ≤ TH .

(10)

To prove Lemma 2, we formulate Lemma 3. It states that the space of solutions
(schedules) for a PSPcom problem instance with 16 machines and no additional restric-
tions is equivalent to the space of schedules for a PSPcom instance with 4 machines and
the enforced configuration shown in Figure 2. In this configuration, tasks mapped to
one machine may be executed in a time interval [0, x], whereas all other tasks may be
executed in a time interval [x, TH ′′] for a fixed (of our choosing) x ∈ {2, . . . , TH − 3}.
Therefore, this lemma allows for working in this constrained space of schedules.

Lemma 3. Given a PSPcom instance I ′′ = (T ′′,M′′, C′′, TH ′′) and a parameter x >
1, whereM′′ = {µ1, µ2, µ3, µ?}, and TH ′′ > x+2, it is possible to create an instance
I ′ such that I ′ is feasible if and only if

∃s, a feasible schedule of I ′′, such that:

∀τi ∈ T ′′ : m(τi) = µ? =⇒ s(τi) mod TH
′′ ∈ [0, x),

∀τi ∈ T ′′ : m(τi) 6= µ? =⇒ s(τi) mod TH
′′ ∈ [x, TH

′′).

(11)
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t
Fig. 2: Illustration of the complexity proof. Gray solid area stand for the tasks added in Lemma 3.
In the lower right hatched area, JS3 tasks are located, whereas the upper left hatched area contains
the anchoring tasks added in Lemma 2.

Equation (11) states that the tasks from T ′′ are forbidden to execute in the gray solid
areas of Figure 2 (and in any of their congruent copies).

We first prove Lemma 2 using the result of Lemma 3 and then we prove Lemma 3.

Proof (Lemma 2). The main idea is to use Lemma 3 to work with schedules with the
configuration displayed in Figure 2. We “anchor” each chain by prepending to it a spe-
cial task assigned to µ?. This guarantees that each chain starts before time x. Since
tasks of I (i.e., JS3 tasks) must be executed in the time interval [0, TH ′′+ x) due to the
end-to-end latency constraint, and at the same time cannot be executed in time intervals
[0, x) and [TH ′′,TH ′′ + x), they must be executed in interval [x, TH ′′]. Therefore, the
makespan of the resulting JS3 chains is not more than TH = TH

′′ − x. The details
follow.

For each chain, we create a new anchor task τac and prepend it to the chain: C ′′c =

(τac , C
1
c , . . . , C

|Cc|
c ). We create an instance I ′′ = (T ′′,M′′, C′′, TH ′′) with T ′′ =

T ∪ {τa1 , . . . , τak},M′′ =M∪{µ?}, C′′ = {C ′′1 , . . . , C ′′k }, and TH ′′ = TH + k. We
assign the anchor tasks to the auxiliary machine: m(τac) = µ? for all c.

We use Lemma 3 on I ′′ with x = k to obtain I ′ = (T ′,M′, C′, TH ′). We want
to prove that I ′ simulates the JS3 makespan constraint (10) in I. By Lemma 3, I ′
enforces the configuration depicted in Figure 2 in I ′′. We only have to prove that I ′′
with the configuration constraints (11) simulates the JS3 makespan constraint (10) in
I. Formally, proving the lemma is now equivalent to proving that I ′′ satisfies config-
uration Constraints (11) if and only if I satisfies Constraint (10). Next, we prove both
implications.

“I satisfies Constraint (10) ⇒ I ′′ satisfies Constraint (11)”: Let s be the feasible
schedule of I satisfying Constraint (10). We create s′′ as follows:

s′′(τi) =

{
c− 1 if τi = τac for some τac ,
s(τi) + k otherwise.

The definition is valid, since if τi 6= τac , then τi ∈ T , and s(τi) is defined. Both
the satisfaction of Constraints (11) of s′′ and its 0-degeneracy with TH ′′ = TH + k are
guaranteed by the construction.

I ′I
initial 
with makespan 
   constraint (9)

I ′′
+ anchor tasks

in Lemma 2 Lemma 3
con�guration 
constraint (10) 

                    feasible (non-collision 
                       and 0-degeneracy 
                     constraints (6) and (7))

Lemma 2

PSPcom

+  C̃0, . . . , C̃9

Fig. 3: Illustration of the connection of instances I, I′, and I′′ in Lemmas 2 and 3
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Fig. 4: Assignment of tasks in C̃0, . . . , C̃5 to machines µt1 , . . . , µt6 , µs1 , . . . , µs3 and the only
possible schedule of these tasks. Tasks in the same chain have the same background. The purpose
of this configuration is to make free only intervals [x, x+ 2) on machines µs1 , µs2 and µs3 .

“I ′′ satisfies Constraint (11)⇒ I satisfies Constraint (10)”: Let s′′ be the feasible
schedule of I ′′ satisfying Constraints (11). Since there are k anchor tasks assigned to
machine µ? and k time moments where the tasks may be scheduled, there must exist τac
such that s′′(τac) mod TH

′′ = 0. We may assume s′′ is τac -initial, otherwise we invoke
Lemma 1 with τac and make it such. Observe that the shifted schedule still satisfies
Constraints (11). Since s′′ is initial, s′′(τac) ≤ TH ′′ and therefore, due to configuration
constraints (11), s′′(τac) ≤ k for all τac . Then, s(τ)′′ < TH

′′+ k for all τ ∈ T because
of 0-degeneracy, and, finally, s′′(τ) < TH

′′ = TH + k since Constraints (11) hold for
s′′.

We may thus set s(τi) = s′′(τi)−k for all τi ∈ T and observe the resulting schedule
is feasible and satisfies Constraint (10).

Now we proceed by proving Lemma 3.

Proof (Lemma 3). We create 12 new machines and 10 × TH new tasks. We create a
new instance I ′ = (T ′,M′, C′, TH ′) withM′ =M′′ ∪ {µt1 , . . . , µt9 , µs1 , µs2 , µs3},
TH
′ = TH

′′, C′ = C′′ ∪ {C̃0, . . . , C̃9}, and T ′ = T ′′ ∪ C̃0 ∪ · · · ∪ C̃9. Each chain
consists of TH ′′ new tasks with unit processing times and we shall prove that the start
times of all auxiliary tasks are predetermined across all initial feasible schedules.

We prove the lemma in two steps: first, we describe the assignment of the tasks in
C̃0, . . . , C̃5, and show that they enforce a special configuration on machines µs1 , µs2 ,
and µs3 . Then, we describe the assignment of the remaining chains and conclude the
proof.

The assignment of tasks in C̃0, . . . , C̃5 to machines is shown in Figure 4. All tasks in
each chain except for two tasks are assigned to the same machine, whereas the remain-
ing two tasks are assigned to two other mutually distinct machines. This assignment
ensures that the shown schedule s is the only possible for any C̃1

0 -initial feasible sched-
ule. Since each added chain contains exactly TH tasks, fixing the start time of one task
in a chain results in uniquely determined start times of all other tasks in this chain due
to non-collision and 0-degeneracy constraints (7) and (8), respectively. Thus, the start
times of the tasks in C̃0 are uniquely determined because of C̃1

0 . Then, C̃x+1
1 can only

start at x since for any other choice, C̃0 and C̃1 would collide. Therefore, s(C̃r1) = r−1
for all r. We proceed with the same reasoning, and conclude that s(C̃rc ) = r − 1 for all
c ∈ {0, . . . , 5}, r ∈ {1, . . . , TH}.
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Fig. 5: Assignment of tasks in C̃6, . . . , C̃9 to machines µs1 , µs2 , µs3 , µt7 , µt8 , µt9 , µ1, µ2, µ3,
µ? and the only possible schedule of these tasks. Dark gray rectangles are the tasks fixed in
Figure 4. The purpose of this configuration is to occupy interval [0, x] on machines µ1, µ2, and
µ3 and [x, TH

′′] on µ?.

The assignment of the tasks in chains C̃6, . . . , C̃9, is shown in Figure 5. The first
x tasks in each chain are assigned to the same machine µ1, µ2, µ3 and µt8 , the next
two tasks in each chain are assigned to the same machine µs1 , µs2 , µs3 and µ?, and the
rest of the tasks in each chain are assigned to the same machine µt7 , µt8 , µ?, and µt9 ,
respectively. Note that machines µ1, µ2, µ3, µ? are free exactly at times indicated by
Constraint (11) (compare with Figure 2).

Using the same reasoning as in the previous part of the proof, we can prove that
the configuration shown in Figure 5 is the only possible for any C̃1

0 -initial feasible
schedule. We shall now verify that I ′ satisfies the requirements of the lemma, i. e., that
it simulates configuration constraints (11) in I ′′. We prove both implications:

“I ′′ satisfies configuration constraints (11) =⇒ I ′ is feasible”: Let s′′ be the
schedule of I ′′ satisfying Constraints (11). We define s′(τi) = s′′(τi) for τi ∈ T and
use the idea from Figures 4 and 5 for the remaining auxiliary tasks. By the construction,
s′ is 0-degenerated and has no collisions.

“I ′ is feasible =⇒ I ′′ satisfies configuration constraints (11)”: Let s′ be a feasible
schedule of I ′. We assume without loss of generality that s′ is C̃1

0 -initial, otherwise we
make it such using Lemma 1. We define s′′(τi) = s′(τ) for all τ ∈ T . Due to s′ being
C̃1

0 -initial, we know that it must schedule tasks from the auxiliary chain as displayed in
Figure 5. Then Constraints (11) become just the no-collision constraints on s′ between
tasks from T and tasks from C̃6, C̃7, C̃8 and C̃9. Since these hold by construction, we
are done.

Observation. If Lemma 2 is used on I = (T ,M, C, TH), the resulting instance has
O(|T |+ TH) tasks, and the time complexity of constructing it is also O(|T |+ TH).

Theorem 1. There exists a polynomial reduction from JS3 to PSPcom .

Proof. Let J = (T̂ ,M̂, Ĉ, L) be a JS3 instance. Let I = (T ,M, C, TH) be the in-
stance obtained from J by the naive reduction described in Section 3.3. We consider
two cases:

– The conditions of Lemma 2 do not hold. Then either |C| = 1, or TH = L ≤ 2. In
both cases, we may decide the feasibility of the instance in polynomial time.
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– If TH > |T |, the instance is always feasible.
– Otherwise, we use Lemma 2 to obtain in time O(|T | + TH) = O(|T |) an in-

stance I ′ that is feasible if and only if there is a feasible schedule s of I satisfy-
ing Constraint (10), which is equivalent to J having a schedule satisfying Con-
straint (9).

Corollary 1. PSPcom and PSPgen are strongly NP-hard.

4 Heuristic Approach

We propose a local search heuristic to solve PSPgen described in Section 2. The al-
gorithm first generates a (possibly infeasible) schedule and then, for a fixed number of
iterations, creates a new schedule based on the current one. The old schedule is swapped
with the new one if the quality of the latter is not worse in terms of degeneracy.
Schedule representation In PSPs, schedules are usually represented directly by task
start times. However, inspired by the disjunctive graphs in the job shop scheduling
problem [2], we represent a schedule as a queue of tasks. We reconstruct the schedule
whenever we want to compute its degeneracy. A queue Q is a totally ordered list of
tasks: Q = (τπ(1), . . . , τπ(n)), where π is a permutation of {1, . . . , n}. Let Q(i) =
τπ(i).
Reconstruction A reconstruction function f : Q → s is a function that takes Q
as an argument and returns a schedule (i.e., task start times). An important property of
reconstruction functions is that a small change in a queue results in a small change in the
reconstructed schedule. This property is the main motivation for the design decisions
of this function. Moreover, two schedules represented by start times might look very
different, but in fact they might be nearly identical from the ”search space” viewpoint.

The reconstruction starts with an empty schedule (i.e., s(τi) = ∅ for all τi) and it
schedules task Q(`) in the `-th iteration such that non-collision (1) and precedence (3)
(if the predecessor of Q(`) is already scheduled) constraints are respected. Once a task
is scheduled, it remains fixed until the end of the reconstruction. Since tasks may not
be in their precedence order in a queue Q, missing precedence constraints are handled
at the end of the reconstruction by the shifting procedure from Lemma 1 in Section 2.2.
Allowing broken precedence constraints in Q gives the heuristic the freedom to decide
that a particular precedence relation should be broken. Note that the partial schedule
may not be extendable to a feasible schedule. Then, we return ∅ instead of the schedule.

We next describe the strategy to assign the start time for task Q(`) = τi in de-
tails. For each machine µq , we maintain the time head(µq) = max{s(τi) + p(τi) |
s(τi) 6= ∅,m(τi) = µq} at which the last task assigned to this machine (scheduled
so far) finishes executing. We schedule task τi at the earliest time t such that: 1. it is
not sooner than the last task on the corresponding machine, i.e., t ≥ head(m(τi)); 2.
non-collision constraints are satisfied, i.e., no tasks are already scheduled in intervals
[t+k ·T (τi), t+k ·T (τi)+p(τi)); and 3. t ≥ s(τj)+p(τj), where τj is the predecessor
of τi (if τj = ∅ or s(τj) = ∅, we set s(τj) = −∞). If no such t exists, we return ∅. Due
to the efficient schedule representation, finding the smallest t is done quickly. However,
in this work we do not elaborate on it due to the space limit.
Neighbor function A neighbor function takes the currentQ and modifies it. The result-
ing queue is a neighbor. Multiple functions have been tested, out of which the most no-
table are presented in Table 1. Note that in this work, all random choices are assumed to
be in a form of the uniform distribution. The idea used by the most successful functions,
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as shown later in the experiments, is to rearrange the tasks of a randomly chosen chain
such that they go in the order of precedence relations (chain_sort function). For ex-
ample, queueQ = (· · · , C2

c , · · · , C3
c , · · · , C1

c ) becomesQ′ = (· · · , C1
c , · · · , C2

c , · · · , C3
c )

for a chosen chain Cc.

Table 1: List of neighbor functions
Name Description
swap_uniform Swap two randomly chosen tasks
chain_uniform Perform swap_uniform for two tasks of a random chain
chain_adjacent Swap two adjacent tasks in a random chain
swap_ran Perform one of the previous three randomly
chain_sort Rearrange tasks of a random chain to satisfy precedence relations
chain_sort_patient Perform chain_sort on a chain with broken precedences
chain_sort_loc Perform chain_sort until the neighbor degeneracy decreases
combined_local Perform chain_sort_loc; if all chains are sorted, do swap_ran
combined_random Perform swap_ran or chain_sort_patient randomly

switch
In the initial iterations, perform chain_sort_loc,
later perform combined_random

In chain_sort_loc, the change is discarded if the degeneracy of a queue with
the rearranged tasks is worse, and the change is kept if the degeneracy has not changed.
In one iteration, we apply this function until the neighbor degeneracy becomes less than
the initial degeneracy or until the queue is sorted. The intuition behind is that although
sorting the current chain may not change the degeneracy, it may nevertheless improve
the solution. Finally, switch is the only function that change its strategy with itera-
tions. Here, chain_sort_loc is used until all chains are sorted. From the first itera-
tion when there is no unsorted chain onward, we always perform combined_random.
The idea is that in the initial burn-in phase, we want to sort as many chains as possible.
Once we achieve that, we want to avoid getting stuck in a local minimum. Thus, we
switch to combined_random, allowing more unpredictable changes.
Initialization To find an initial Q, we sort all tasks in the ascending order using a
custom comparison ≺ defined as follows (“<” denoting the lexicographic comparison
on ordered pairs): τi ≺ τj ⇐⇒ (T (τi),−p(τi)) < (T (τj),−p(τj)). In other words,
we place tasks with smaller periods first, and in case of a tie, we place longer-executing
tasks first.

4.1 Algorithm Overview

The proposed local search heuristic is presented in Algorithm 1. It is parameterized by
the choice of two neighbor functions, N and N+∞, and the running time time limit.
We use function N when the current schedule is feasible (i.e., the reconstruction man-
aged to find a non-collision schedule for a queue in the corresponding iteration), whereas
we useN+∞ when the schedule is not feasible. The parameter time limit can be cho-
sen based on the time that is acceptable by the system designer. The algorithm starts by
generating an initial queue on Line 1. Then, the heuristic repeats the following proce-
dure for a fixed number of iterations (finishing early if δ(Q) = 0 (Line 8)). First, the
schedule is reconstructed, and its degeneracy is computed (Line 3). If the reconstructed
schedule is infeasible or the reconstruction fails, we set δ(Q) = +∞. In this case, as
mentioned earlier, a neighbor is generated by calling N+∞(Q). Otherwise, it is done
usingN (Q). If the new schedule is not worse than the old one (Line 6), the old schedule
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Input:N ,N+∞, time limit
1 Q.initialize();
2 while elapsed time < time limit do
3 s = Q.reconstruct(), δ1 = δ(s);
4 if δ1 = +∞ then Q′ =N+∞(Q) else Q′ =N (Q) ;
5 s′ = Q′.reconstruct(), δ2 = δ(s′);
6 if δ2 ≤ δ1 then
7 Q = Q′;
8 if δ(Q)′ = 0 then

Output: s
9 end

10 end
11 end

Output: s

Algorithm 1: Local search heuristic

is swapped with the new one (Line 7), and the next iteration continues working with this
updated schedule. The idea behind using non-strict inequality on Line 6 is that we want
to explore as much solution space as possible and not get stuck in a local optimum.

4.2 Experimental Results

Experimental setup We randomly generated 7 sets of problem instances differing
in the following parameters: minimum and maximum number of tasks in each chain,
l(C)min and l(C)max, respectively, and the upper limit on the utilization of each ma-
chine, σmax = maxµ∈M σµ . The utilization is defined as σµ =

∑
τ : m(τ)=µ

p(τ)
T (τ) ,

which is the fraction of time this machine is occupied. In Sets 1-6, the utilization of
95% of the machines lies in the interval [σmax − 0.2, σmax]. In Set 7, the utilization
of more than 90% of the machines equals 1, and the utilization of the rest of the ma-
chines lies in the interval [0.96, 1). The number of tasks in all sets varies from 100
to 9 000, with more than half of the instances having more than 1 000 tasks in each
set. Each of these seven test sets consists of 4 groups of 200 problem instances, with
the following parameters (P is the set of periods, |M| is the number of machines): 1.
P = {20, 21, . . . , 210}, |M| = 5, 2. P = {20, 21, . . . , 210}, |M| = 10, 3. P = {2, 10,
20, 100, 200, 1000, 2000, 4000}, |M| = 5, and 4. P = {8, 16, 64, 256, 1024, 2048},
|M| = 5. The generation procedure ensures that each of the 5 400 generated problem
instances has a 0-degenerated schedule.

We ran the heuristic 6 times on each instance with N+∞ = chain_uniform
with a different random seed. For each run of the heuristic, we set time limit to 3
minutes. We choose the best of these runs as a result. Finally, we performed the ex-
periments on a machine equipped with four Intel(R) Xeon(R) Silver 4110 CPUs, all
clocked at 2.10GHz, each having 8 cores and 16 threads. Similar results were achieved
on a middle-end laptop.

Results Table 3 presents the average degeneracy of the heuristic algorithm with the
most promising neighbor functions on problem instances of Set 3, which we consider
moderately difficult. The percentage of problem instances for which the heuristic found
a feasible solution is 98.98. The degeneracy of the heuristic with all neighbor functions
is relatively small, however combined_local and switch show the best results
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Table 2: Parameters of the generated sets
Name σmax l(C)min l(C)max

Set 1 0.8 5 15

Set 2 0.9 2 5

(?) Set 3 0.9 5 15

Set 4 0.9 15 25

Set 5 0.93 5 15

Set 6 0.96 5 15

Set 7 1 5 15

Table 3: Results on Set 3 with various functionsN
Neighbor function average degeneracy
chain sort 1.49
chain sort patient 1.49
combined local 0.13
combined random 1.93
switch 0.12

Table 4: Results of the heuristic withN = combined_local on different sets
Set % of solved instances Average degeneracy
Set 1, σmax = 0.8, medium chains 99.56 0
Set 5, σmax = 0.93, medium chains 97.98 0.49
Set 6, σmax = 0.96, medium chains 96.65 1.34
Set 7, σmax = 1, medium chains 54.50 58.52
Set 2, σmax = 0.9, short chains 98.56 0.01
Set 3, σmax = 0.9, medium chains 98.98 0.13
Set 4, σmax = 0.9, long chains 98.90 0.96

with statistically insignificant difference. Since the former is conceptually easier, we
use it in the second experiment.

Table 4 shows the percentage of problem instances for which a feasible solution was
found and the average degeneracy for each test set. Note that Sets 1, 3, 5, 6, and 7 have
equal parameters except for σmax. As expected, increased machine utilization leads to
larger degeneracy with the significant difference for Set 7 with σmax = 1. On the other
hand, Sets 2, 3, and 4 differ in the chain length only. Instances with longer chains have
larger average degeneracy, but the results do not suggest such a dramatic increase as in
Set 7.

5 Conclusions and Future Work

This paper addresses the periodic scheduling problem PSPgen with chains of prece-
dence relations. In this problem, periodic tasks are scheduled in time on dedicated ma-
chines so that at any moment, at most one task is executed on each machine. We define
a degeneracy of a chain as the number of broken precedence relations within the time
window of one period. The problem is to find a schedule with the minimum degeneracy.

We prove that this problem is strongly NP-hard even when restricted to unit pro-
cessing times, a single period, and 16 machines (called PSPcom ), by a reduction from
a variant of a job shop scheduling problem. In this reduction, by introducing auxil-
iary tasks, machines, and chains, we prove that the entire space of solutions of PSPcom

is equivalent to the space of solutions respecting the job shop constraint on the total
length of the schedule (missing in PSPcom ). Furthermore, we present a local search
heuristic algorithm that solves PSPgen . We generated 5 400 problem instances allow-
ing 0-degenerated solutions. On them, we experimentally demonstrate the soundness of
our algorithm and show that it can successfully solve 92% of the instances with average
resulting degeneracy of 8.78, each in a few minutes.
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As future work, it would be interesting to explore the complexity of PSPcom on
a smaller number of machines. Whereas the PSPcom with a common period on one
machine is polynomially solvable (by placing one task after another of the first chain in
precedence order, then the second chain, etc., in an arbitrary order), scheduling on two
and more resources (up to 15) is an open question.
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