
Leveraging Eclipse IoT in the Arrowhead
Framework

Lukas Römer
Bosch.IO GmbH
Berlin, Germany

lukas.roemer@bosch.io

Sven Erik Jeroschewski
Bosch.IO GmbH
Berlin, Germany

svenerik.jeroschewski@bosch.io

Johannes Kristan
Bosch.IO GmbH
Berlin, Germany

johannes.kristan@bosch.io

Abstract—The Arrowhead Framework is a holistic framework
for industrial automation in a service-oriented manner. It pro-
vides means to orchestrate systems and services within local and
remote clouds. Eclipse IoT (Internet of Things) provides three
stacks of software and tools, which allow the creation of IoT
applications for (i) constrained devices, (ii) gateways and (iii)
cloud backends. Several of the Eclipse IoT projects appear to
be useful also within the Arrowhead Framework. This paper
identifies possible candidates for the integration of Eclipse IoT
technologies into the Arrowhead Framework, discusses for one
example (Eclipse Hono) how such integration could look like,
and gives an outlook for the next candidates to be integrated.

Index Terms—IOT, IIOT, Eclipse, Arrowhead, Device Hub,
Update Management

I. INTRODUCTION

With increasing computing power, storage capacity and
simultaneously decreasing chip sizes and power consumption,
more embedded devices than ever execute intelligent tasks and
share the results. This development, more recently known as
the Internet of Things (IoT), enables a variety of applications
ranging from smart cities through interconnected cars to
more intelligent households. However, not only the consumer
market is evolving, but also the industrial sector adopts more
efficient IoT methods in production and logistics. Currently,
many vendors for these industrial IoT (IIoT) solutions develop
proprietary systems to address various challenges such as
the management of manufacturing devices or monitoring and
controlling industrial processes.

The Arrowhead Framework [1] attempts to offer a generic
and comprehensive framework addressing universal challenges
on the path to a successful IIoT infrastructure. The Arrowhead
approach is based on the concept of Service-Oriented Archi-
tecture (SOA) and provides several standardized modules and
interaction patterns. However, as there already exist powerful
and proven open source IoT libraries and frameworks, a
technical implementation of the concepts in Arrowhead does
not need to start all over. Instead, one can try to reuse as
much as possible since integrating with existing technologies
and projects bears chances of synergy effects to save efforts,
time and money. As part of this work, we illustrate this by
showing a number of projects that could be used as part of an
Arrowhead deployment.

The landscape of existing open source projects in the IoT
domain has become fairly large and heterogeneous. Therefore,

the process of choosing relevant projects and defining valid
criteria for that choice is an extensive task in itself. Hence,
we decided to focus this work on the results from the Eclipse
IoT working group which is one of the largest communities in
the IoT domain and part of the Eclipse Foundation [2]. In the
following, we analyze and show how technologies developed
in the context of the Eclipse IoT working group can be used to
either complement existing Arrowhead core systems or create
new Arrowhead core systems. An analysis for the contrary
direction, namely to integrate components of the Arrowhead
Framework to Eclipse IoT technologies, is beyond the scope
of this work. Moreover, the Eclipse IoT working group does
not build one homogeneous framework and does not follow
one single architecture, but instead creates a collection of
heterogeneous software projects around aspects of IoT use
cases.

II. ARROWHEAD AND ECLIPSE IOT

As mentioned above, the Arrowhead Framework evolves
around the concept of SOA. Within the Arrowhead Framework
each physical computation resource can be referred to as a
device. Each device is capable of running multiple software
stacks that each are referred to as a system. Further, each of
these systems provides a set of services that can either be
used to interact with the system or that interact with another
system through its service on behalf of the initiating system.
In Arrowhead the different systems can be encapsulated in so
called ”local clouds”. Often the services in one local cloud can
reach each other over the same local network. One motivation
of introducing local clouds is to cope with the complexity of
larger systems of systems.

The base of every Arrowhead local cloud is the set of three
so-called mandatory core systems which are the authorization
system, the service registry system and the orchestration sys-
tem. Those systems need to be present in each local cloud. For
a basic service interaction, a service A, that wants to initiate
a service exchange, would send a request to the orchestration
system to get the address of a service B that can process the
request. To answer the orchestration request, the orchestration
system asks the service registry system for all known services
matching the request. Then the orchestration system checks
with the help of the authorization system for which matching
services the requesting service has the authorization to use



them. In the last step, the orchestration system then returns the
information for a service that matches the request to service
A which then can engage in the actual service interaction. For
a more detailed description of the mandatory core, systems
refer to [1].

Besides the described mandatory core systems, there are
already some existing core services that do not provide their
application-specific logic but can be used to improve and ease
the service interaction and orchestration. Examples for such
core services are a translation system to translate between
different protocols [3], a plant description system [4] or a
system to enable the communication between different local
clouds [5].

As already introduced above, one large community working
on topics and projects that are relevant in the context of
the Arrowhead Framework is the Eclipse IoT working group.
The Eclipse Foundation provides infrastructure, processes and
further services such as marketing support for open source
projects that are developed under its umbrella. The foundation
itself is neutral regarding the developed technologies and
the domains addressed by those projects shaping the actual
developments. According to the charter of the IoT working
group, its members aim to ”encourage, develop, and promote
open source solutions that can be used to overcome market
inhibitors found in most IoT ecosystems” [6]. The members
of the working group are mostly private companies from
the IT and industrial domains such as the strategic members
Eurotech, RedHat, and Bosch.IO. Among the other members
are currently IBM, Nokia, Siemens, and DB Systel [7]. Some
of these companies also provide commercial offerings on top
of Eclipse IoT software implementations [8].

Since the topics addressed in the Eclipse IoT working group
evolve around different aspects of the actual solutions, the
members came up with differentiation into three hierarchical
layers as described in [9] and depicted in Fig. 1 to also
provide a grouping of their projects. In the bottom layer
are constrained sensors and actuators that measure data and
execute commands but do not process or evaluate information
due to low computing power. These devices interact with
gateways at the edge, which build an intermediate layer to the
IoT cloud platforms. The cloud platform or back-end enables
high scalability, fast processing of large data volumes, data
aggregation, and long-term analysis. Currently, approximately
35 different open source projects form the working group.

This paper evaluates to which extent these existing tech-
nologies do harmonize with the concepts of the Arrowhead
Framework in an industrial IoT context. As most Eclipse IoT
projects are not primarily designed for industrial use cases
but more for general applicability, not all projects are equally
suited to be used within the Arrowhead Framework. However,
the Eclipse IoT working group identified its projects that are
ready for potential Industry4.0 application and published a
white paper on that [2]. Table I lists the identified projects
and provides a short description of their functionality.

The concept of local clouds in the Arrowhead Framework
leads to a certain degree of decentralization. At the same time,

Constrained Devices

Gateways and Smart Devices

IoT Cloud Platform

Fig. 1: Eclipse IoT Software Stack

Project Category Layer
Eclipse Milo Data Aggregation
Eclipse
Mosquitto

Data Aggregation Cloud

Eclipse Paho Data Aggregation Devices
Eclipse Unide Data Aggregation
Eclipse OM2M Data Aggregation
Eclipse 4diac Data Aggregation
Eclipse Kura Data Aggregation, Secu-

rity, Digital Twin
Gateways

Eclipse Leshan Security, Device Manage-
ment

Gateways, Cloud

Eclipse Keti Security
Eclipse Wakaama Device Management Devices
Eclipse Kapua Device Management,

Event Management and
Data Analysis

Cloud

Eclipse hawkBit Device Management Cloud
Eclipse Hono Event Management and

Data Analysis
Cloud

Eclipse Ditto Digital Twin Cloud
Eclipse Vorto Cloud

TABLE I: Eclipse IoT projects suitable for industrial use cases

many projects of the Eclipse IoT working group, especially
from the IoT cloud platform layer, are mostly designed and
used for more centralized deployments where a cloud instance
processes the data from the devices. However, it is also possi-
ble to change the deployment to multiple local clouds and have
a more ”on-premise” styled deployment model. Supporting
this is the Arrowhead’s SOA-structure which allows simple
replacement and integration of new modules and is well suited
for incorporating existing software components.

The following provides a short evaluation of each eligible
Eclipse IoT project and its usability within one or multiple
Arrowhead systems. which is also depicted in figure 2. Almost
none of the projects can be used without adaption or without at
least combining them with other modules. However, many of
them could potentially build the foundation of an Arrowhead
component or at least function as a structural archetype.

A. Eclipse Ditto

Eclipse Ditto provides so-called digital twins [10]. In the
context of Eclipse Ditto, a digital twin is a pattern where
things from an IoT context, such as sensors or machines, are
represented in the digital world. Each representation has its
attributes, such as IDs or names, and features like a sensor
value. Based on that Ditto can act as a single point of truth



MANDATORY
CORE SYSTEMS

Service Registry

Orchestrator

Authorization

SUPPORTING
CORE SYSTEMS

Plant Description

Configuration

Device Registry

System Registry

Event Handler

QoS Manager

Historian

Gatekeeper

Translator

. . .

APPLICATION
SYSTEMS

. . .

Milo

Unide

OM2M

4diac

Vorto

Leshan

Keti

Wakaama

Mosquitto

Paho

Hono

Ditto

Kapua

hawkBit

Kura

Fig. 2: Comparison of Arrowhead systems and eligible Eclipse
IoT components. A connection indicates a potential application
of an Eclipse IoT project in one of the generic Arrowhead
systems.

for a given device or entity. Ditto further organizes access to
these digital twins, provides a safe and multi-protocol-capable
API to allow integration with other back-end infrastructure,
and features individual access policies. Another aspect is that
one does not always need to communicate directly with the
device because Ditto can store its current state. This is a
benefit, especially when one needs to interact with resource-
constrained devices with limited communication or battery
capabilities.

Within the Arrowhead context, Ditto can be part of a
device registry. However, this device registry would not just
be a repository for all existing devices, as the Arrowhead
Framework declares it (compare [1]), but even more, handle
changing device states. One could even argue that such an
implementation exceeds the scope of a device registry in
the Arrowhead context. Therefore, it seems more sensible to
introduce a new digital twin core system. Besides acting as a
registry for devices, this system would also store the current
device state and make it available at any time. Moreover, Ditto
integrates with Eclipse Hono, making it a good bundle in
serving even more different protocols for the applications and
devices.

B. Eclipse Vorto

Eclipse Vorto is a domain-specific language (DSL) inspired
by Java. [11]. It offers a generic possibility to describe
the characteristics of a hardware device, such as name or
size and attributes like temperature or location, but also
its functionalities. The Vorto community further provides a
repository to share generic building blocks to reuse for new
device definitions. Based on those definitions, Vorto allows
the creation of code generators to generate code stubs for the
device integration with various services and platforms.

One could use some of that functionality for building a
device-, system-, or service-registry comparable to the ap-
proach described in [5] and [1]. Moreover, it possible to
design a plant description model using a Vorto definition. The
Arrowhead plant description system provides a basic overview
of a plant’s layout [4]. As Vorto also offers a meta-model to
describe the relationship between different modules and their
dependencies, Vorto could be an alternative to other modeling
techniques.

C. Eclipse Leshan & Wakaama

Eclipse Leshan comprises a Java server and client imple-
mentation of the Lightweight M2M (LWM2M) protocol. The
LWM2M protocol [12] developed by the Open Mobile Al-
liance (OMA) offers a standardized way to manage and operate
a variety of low power hardware devices. LWM2M is often
used on top of the Constrained Application Protocol (CoAP)
[13] and features a REST-like interface. Hence, Leshan could
complement an Arrowhead’s configuration system introduced
in [14]. It enables several management processes such as lock
& wipe, device configuration, firmware updates, diagnostics,
and data reporting [15].

A device-side counterpart to Leshan is Wakaama, which
is compatible with every POSIX-compliant operating system
[16].

D. Eclipse hawkBit

Eclipse hawkBit is a device management solution focusing
on software roll-outs [17]. With Eclipse hawkBit it becomes
possible to manage different software versions on IoT devices
and define and monitor campaigns on when to perform soft-
ware updates. The application comprises the update server, a
management UI, and a set of APIs. The first API exposes
a REST-based management interface for third-party applica-
tions. The second API provides a direct device integration via
REST and polling, and the third API offers device integration
via AMQP 1.0. This latter endpoint enables the incorporation
of intermediate applications to feature different protocols,
such as OMA-DM, LWM2M, or proprietary ones. Eclipse
hawkBits’ software rollout process allows sophisticated con-
figuration options like as the grouping of devices, cascading
deployment, and fine-grained monitoring. On a shop floor, it
is required to run software updates on the various systems in
a reliable and fast way as any production outages can yield
severe losses. One option is to place Eclipse hawkBit as an
update server that orchestrates the updates in a local cloud.



The update then can happen on system, service, application
or configuration level.

Hence, Eclipse hawkBit appears to be a potential candi-
date for an Arrowhead configuration system implementation.
Configuration and update procedures are highly critical, as
they could potentially compromise a multitude of devices by
implanting malicious code. This is another motivation to rely
on already present, open, and proven technologies for this
task. However, one open action point is the integration of
the existing hawkBit authorization measures and the current
authorization approach in the Arrowhead Framework.

E. Eclipse Keti

Eclipse Keti is an Attribute Based Access Control (ABAC)
system that provides fine-grained authorization to an existing
RESTful API [18]. The application allows the definition of
complex access policies using XACML-based rules. Eclipse
Keti offers authorization flows in compliance with the OAuth
2.0 specification [19]. Keti could serve as a starting point
for an authorization system or the authorization aspect of a
gatekeeper system. However, other Open Source projects in the
Authentication and Authorization domain, such as Keycloak,
have seen a wide adoption also within the Eclipse IoT working
group as they are more flexible and feature-rich.

F. Eclipse Hono

Eclipse Hono is a multi-protocol IoT hub, connecting a large
number of devices with a cloud-based business application
[20]. One main benefit is that Hono supports diverse protocols
such as HTTP, MQTT, CoAP, and AMQP 1.0 to interface
with the devices via the so-called southbound API. For each
of these protocols, Hono has a so-called protocol adapter that
transports the data to the messaging network of Hono. It is then
possible for a business application to retrieve that data from the
network using an AMQP 1.0 endpoint from Hono. It is further
possible to support additional protocols by implementing the
corresponding protocol adapter.

Hono supports three types of data exchange. First, it allows
the transmission of telemetry data to the business application.
Examples are temperature or humidity information. Second,
it is possible to transmit events to the business application
to indicate situations like the completion of a process step
in an industrial plant. The difference between telemetry and
event data is the delivery semantics. For events, the delivery
happens ”at least once”. In the case of telemetry messages,
the delivery mode is either ”at least once”; or ”at most once”.
Third, business applications can carry out the command and
control interaction patterns to trigger actions on a device and
send data to the device.

When it comes to possible scenarios for using Hono in
the context of the Arrowhead Framework, there are two
imaginable applications. Hono covers an important aspect of
every IoT infrastructure, which is the linkage of the devices
with business applications. Especially, devices that do not
expose RESTful APIs via HTTP and may rely on a broker
infrastructure as in publish-subscribe protocols (e.g. MQTT)

Event Handler

Mosquitto

Paho

Event-handling
Engine

protocol adapter

App System A

Paho

App System B

HTTP

Fig. 3: Using Eclipse Mosquitto and Paho to build an Arrow-
head event hadling system.

benefit from a centralized device hub. Below, we introduce
an approach to how Hono could be a part of such a device
hub system. Moreover, Hono provides standardized commu-
nication patterns as described above.

The multi-protocol capability of Hono seems promising to
create a translation system as well. The purpose of the Arrow-
head translation system is to provide a bridge between systems
that do not use the same protocol for communication [3].
This translation system would enable an easy transformation
of e.g. MQTT to HTTP or CoAP. However, the standardized
communication patterns in Hono expect the involved systems
to be aware of the translation and its limitations.

G. Eclipse Mosquitto & Eclipse Paho

Eclipse Mosquitto [21] for the broker and Eclipse Paho for
the client [22] are implementations for using the MQTT proto-
col [23]. Together they could build the base for an Arrowhead
event handler system [1], [24]. As the event handler should
provide publish-subscribe functionality [1], an MQTT-based
implementation does fulfill this requirement. The Arrowhead
event handler exposes an API to request a transient instance
that functions as a proxy between two services in the local
cloud. This proxy then consumes a service (e.g. a sensor
system), filters the results, and triggers an event at the initiator.

As depicted in Fig. 3 a potential event handler implementa-
tion uses Paho to transmit data, filtered by the event handling
engine, to the Mosquitto broker. The source application sys-
tem (App System B) could either use a request/response or
publish/subscribe messaging pattern. The event handler uses
a protocol adapter, and if necessary employs the translation
system to connect. The receiving system (App System A)
connects to the Mosquitto broker using Paho as well.

H. Eclipse Kura

Eclipse Kura is an OSGi-based framework for building IoT
gateway applications [25] by abstracting the hardware layer
of the underlying device and enabling remote management. In
terms of applications within the Arrowhead Framework, one
could think of installing Kura to the device and use it then as
infrastructure for deploying own systems.

I. Eclipse Kapua

Eclipse Kapua is a comprehensive IoT cloud platform
featuring device connectivity, device registration, message



AppApp

AMQP 1.0

Hono

MQTT CoAP HTTP AMQP 1.0

§ § § §

System A System B

Fig. 4: Integration of producer systems under Eclipse Hono

routing, device configuration, and data persistence function-
ality [26]. Currently, devices connect with the southbound
API using MQTT. Business applications use either AMQP
1.0 or Websockets with the northbound API. An LWM2M-
integration, for standardized device configuration and man-
agement, is supposed to follow.

Kapua’s device registry could be used in an Arrowhead
context as a device registry system. Likewise, its device
management component could function as a configuration
system and the data persistence layer as a foundation for a
historian system like mentioned by [1] and [24].

III. AN ECLIPSE HONO BASED DEVICE HUB

The Arrowhead Framework comprises an extensible number
of supporting core systems to which we propose to add a ”De-
vice Hub” system. This system provides a central interface for
the communication to and from devices. Devices often form a
heterogeneous infrastructure of multiple connectivity solutions
and protocols. Hence, a multi-protocol module that centralizes
this disparate network traffic and provides a messaging broker
could be beneficial.

The base for this module could be Eclipse Hono, which
provides multiple protocol adapters that enable a wide variety
of different devices to connect. The northbound API used
by other business applications or services exposes an AMQP
1.0 interface on which one can consume all data produced
by the devices. To achieve this, all incoming messages at
the protocol adapter are translated into AMQP 1.0, processed
by an underlying messaging network, and forwarded to the
corresponding business application at the northbound API.
Likewise, commands sent by the business applications get
forwarded to the correct devices using the conversion in the
protocol adapters.

To make Hono compatible with the Arrowhead ecosystem,
the APIs [27] need to be extended by an administration in-
terface, that offers management functionality, such as creation
and deletion of respective services and corresponding devices.

To integrate a new device via Hono, the Arrowhead admin-
istrator only needs to interact with the Device Hub service.
The Device Hub service will then register the new device
in Hono and a consumable service in the Arrowhead service
registry for the produced data of the device. To comply with
the Arrowhead system architecture, one can logically cluster
devices within the same system. For instance, a temperature
monitoring system, consisting of dozens of sensors could be
grouped within the Service Registry.

Fig. 5. depicts the administration process in detail. After the
services of the Device Hub have been registered at the service
registry (1), it is possible to integrate a new hypothetical sensor
system by using the new device hub API. This could either be
done manually by an administrator or automated through an
administrative gateway which requests the device integration.
However, orchestration rules must get inserted manually, as
they involve the consuming system as well. To authorizes as a
device at the southbound API of Hono the sensor system then
needs the credentials. These device credentials get generated
as well during this process, and their provisioning to the sensor
system depends on the actual implementation of that system.
An application system seeking to consume a device service
then initiates an orchestration process at the orchestrator sys-
tem (2). The orchestrator system checks the privileges of the
application system, with the help of the authorization system,
and subsequently hands over the necessary information to
access the sensor system. The access information then points
to the address of the northbound API of Hono, supplemented
by a service-specific identifier. Afterward, the Application
System can now interact with the sensor system, for instance
by subscribing to specific measurement data (3).

The described architecture of an Hono based device hub
inherently restricts the possible use cases. All systems con-
nected to the southbound side of the Device Hub can only be
a service producer, as there is no possibility to initiate a service
orchestration due to a missing link to the service registry.

However, a fundamental challenge remains to be addressed,
which is authentication and authorization. To restrict access to
Hono’s southbound APIs, each device gets individual creden-
tials, enabling fine-grained access control. Hono’s northbound
API does not offer this feature, as it relies on the Apache Qpid
Dispatch Router [28]. Access is secured by a SASL-based
mechanism and there is no user management API available.
There are three potential solutions to this problem. First, each
eligible consuming application system uses the same creden-
tials, transmitted during the orchestration process, and conse-
quently has the same access rights. Moreover, using Hono’s
tenant functionality would allow the creation of credentials
that at least differ for each integrated device, service, or
system. This ensures that the access is restricted to a group of
consuming application systems belonging to the same tenant.
But it does not prevent password leaks and misuse. Second,
one could extend Hono’s internal structure to integrate another
authentication mechanism. However, that might involve com-
plex changes. Third, supplementing Hono with a northbound
wrapper seems most promising. This wrapper needs to handle



� Serv. Reg. Orch. DeviceHub Application System Eclipse Hono Sensor System

1. register(sensor)

1.2 register(Hono device)

registration successful

1.3 register service

registration successful

registration successful

2. whereIs(sensor)

hono://addr
3. subscribe(temperature)

4. publish(5°C)

4.1 publish(5°C)

Fig. 5: System interaction between supporting core services
and the Hono-based messaging hub.

authorization and authentication in more detail. For instance,
Eclipse Ditto integrates with Hono’s AMQP 1.0 API and has
more fine-grained access control mechanisms.

IV. NEXT STEPS

The Arrowhead Framework already contains various sys-
tems serving different purposes within an Arrowhead instance.
As described above, some aspects are not covered yet but
could be beneficial for automating a shop floor. We identified
the mentioned open source projects that appear helpful in the
context of Arrowhead. As a consequence of our analysis, we
propose the following next action points. Eclipse hawkBit
could be used to distribute software packages and other
updates like configurations. One further should investigate how
the services provisioned by Eclipse Ditto can be automatically
registered in the service registry. To use Eclipse Vorto within
the Arrowhead context it is also required to more deeply
analyze whether the meta-models of the Arrowhead Frame-
work and Vorto are compatible and whether the provided code
generators and other supporting facilities are useable within
the Arrowhead Framework.

V. CONCLUSION

The paper presented a high-level overview regarding the in-
tegration possibilities of Eclipse IoT technologies into the Ar-
rowhead Framework. As the analysis revealed within Eclipse
IoT there are not only projects of potential interest for IIoT
applications but some that could be of special interest for the
Arrowhead Framework. For Eclipse Hono the paper already
shows a possible integration. The next step is to come up
with approaches for similarly integrating the other discussed
projects. A next integration candidate is Eclipse hawkBit, to
pave the way towards more automation for the distribution of
software and configuration updates in Arrowhead operations.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EU ECSEL Joint Undertaking under grant agreement
n° 826452 (project Arrowhead Tools) and from the partners’
national funding authorities VDE on behalf of BMBF.

REFERENCES

[1] J. Delsing, IoT automation: Arrowhead framework. CRC Press, 2017.
[2] Eclipse IoT Working Group, “Open Source Software for Industry

4.0,” 2017. [Online]. Available: https://iot.eclipse.org/resources/white-
papers/Eclipse IoT White Paper - Open Source Software for Industry
4.0.pdf

[3] H. Derhamy, J. Eliasson, and J. Delsing, “IoT Interoperability - On-
Demand and Low Latency Transparent Multiprotocol Translator,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1754–1763, 2017.

[4] O. Carlsson, D. Vera, J. Delsing, B. Ahmad, and R. Harrison, “Plant
descriptions for engineering tool interoperability,” IEEE International
Conference on Industrial Informatics (INDIN), vol. 0, pp. 730–735,
2016.

[5] C. Hegedus, P. Varga, and A. Franko, “Secure and trusted inter-cloud
communications in the arrowhead framework,” Proceedings - 2018 IEEE
Industrial Cyber-Physical Systems, ICPS 2018, pp. 755–760, 2018.

[6] Eclipse IoT Working Group, “Charter,” 2019. [Online]. Available:
https://www.eclipse.org/org/workinggroups/iotwg charter.php

[7] ——, “Explore Our Members.” [Online]. Available:
https://iot.eclipse.org/membership/members/

[8] ——, “Eclipse IoT Adopters.” [Online]. Available:
https://iot.eclipse.org/adopters/

[9] ——, “The Three Software Stacks Required for IoT Architectures,”
2016. [Online]. Available: https://iot.eclipse.org/resources/white-
papers/Eclipse IoT White Paper - The Three Software Stacks
Required for IoT Architectures.pdf

[10] “Eclipse Ditto • open source framework for digital twins in the IoT.”
[Online]. Available: https://www.eclipse.org/ditto/

[11] “Eclipse Vorto.” [Online]. Available: https://www.eclipse.org/vorto/
[12] Open Mobile Alliance, “Lightweight M2M (LWM2M) - OMA

SpecWorks.” [Online]. Available: https://www.omaspecworks.org/what-
is-oma-specworks/iot/lightweight-m2m-lwm2m/

[13] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” Rfc 7252, 2014.

[14] O. Carlsson, P. P. Pereira, J. Eliasson, J. Delsing, B. Ahmad, R. Harrison,
and O. Jansson, “Configuration service in cloud based automation
systems,” IECON Proceedings (Industrial Electronics Conference), pp.
5238–5245, 2016.

[15] “Eclipse Leshan.” [Online]. Available: https://www.eclipse.org/leshan/
[16] “Eclipse Wakaama.” [Online]. Available:

https://www.eclipse.org/wakaama/
[17] “Eclipse hawkBit.” [Online]. Available:

https://www.eclipse.org/hawkbit/
[18] “Eclipse Keti.” [Online]. Available:

https://projects.eclipse.org/proposals/eclipse-keti
[19] D. Hardt, “The OAuth 2.0 Authorization Framework [RFC 6749],” RFC

6749, 2012.
[20] “Eclipse Hono.” [Online]. Available: https://www.eclipse.org/hono/
[21] “Eclipse Mosquitto.” [Online]. Available: https://mosquitto.org/
[22] “Eclipse Paho - MQTT and MQTT-SN software.” [Online]. Available:

https://www.eclipse.org/paho/
[23] OASIS, “MQTT Version 3.1.1,” OASIS Standard, 2014.
[24] A. Zabasta, K. Kondratjevs, J. Peksa, and N. Kunicina, “MQTT en-

abled service broker for implementation arrowhead core systems for
automation of control of utility’ systems,” Proceedings of the 5th
IEEE Workshop on Advances in Information, Electronic and Electrical
Engineering, AIEEE 2017, vol. 2018-Janua, pp. 1–6, 2017.

[25] “Eclipse Kura.” [Online]. Available: https://www.eclipse.org/kura/
[26] “Eclipse Kapua.” [Online]. Available: https://www.eclipse.org/kapua/
[27] “Eclipse Hono API.” [Online]. Available:

https://www.eclipse.org/hono/docs/api/
[28] “Apache Qpid.” [Online]. Available: https://qpid.apache.org/


