This is the post peer-review accepted manuscript of:

R. Venanzi, F. Montori, P. Bellavista and L. Foschini, *Industry
4.0 Solutions for Interoperability: a Use Case about Tools and Tool
Chains in the Arrowhead Tools Project,” 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), Bologna, Italy,
2020, pp. 429-433, doi: 10.1109/SMARTCOMP50058.2020.00089.
The published version is available online at:
https://doi.org/10.1109/SMARTCOMP50058.2020. 00089

(©) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting /republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Industry 4.0 Solutions for Interoperability: a Use
Case about Tools and Tool Chains in the
Arrowhead Tools Project

Riccardo Venanzi, Federico Montori, Paolo Bellavista, Luca Foschini
Department of Computer Science and Engineering (DISI)
University of Bologna - Bologna, Italy
riccardo.venanzi, federico.montori2, paolo.bellavista, luca.foschini @unibo.it

Abstract—Industry 4.0 outlines the trend of the massively
adoption of Internet of Things (IoT) nodes in supply chains,
manufacturing, and factories in general. The industry digitaliza-
tion is the key enabler to ease the productive process, drastically
reduce its costs, and boost up the associated business. In this
context, Arrowhead Tools (AHT) is a H2020 EU project provided
by ECSEL that targets automation and digitalization solutions
for the industry in Europe. AT is based on a framework, named
Arrowhead Framework (AHF), developed and provided by the
previous Arrowhead (AH) project. AHF is open source and
addresses IoT-based automation and integration by abstracting
IoT objects to services. AHF enables IoT interoperability and
provides real time data handling, security features, automation
system engineering, and automation systems scalability. In this
paper, after a rapid overview of the AT project and the AHF
architecture, we originally introduce the concept of Tool and
Tool Chain for Industry 4.0 in AH. We also present a vertical
AHT use case along with its implementation, as well as all the
steps to turn a service/application into an AH-compliant Tool.

Index Terms—Industry 4.0, Interoperability, Framework In-
frastucture, Arrowhead

I. INTRODUCTION

The IoT paradigm is playing a pivotal role in our every-
day life. Nowadays the number of connected devices has
already surpassed the world population, and novel device
integration approaches are presented ever more frequently. In
addition, this phenomenon is intensifying with the massively
extension of IoT adoption in the industry domain. In this
context the concepts Industrial IoT (IIoT) and Industry 4.0
have emerged [1]. Among these largely heterogeneous devices
(systems), interoperability has widely recognized as one of
the hottest and most challenging issue of the last decade. At
this purpose, several interoperability frameworks have been
presented, everyone targeting its own use case. This trend leads
to have many IoT Clouds acting as closed islands, with no
interoperability among each other. However, the full potential
of IoT can be exploited only if it is possible to combine and to
make interoperable heterogeneous datasources. Hence, many
researches in the field are focusing on connecting together
heterogeneous IoT Clouds. AHF is an interoperability Service
Oriented Architecture (SOA), that aims to interconnect several
ToT-based clouds. It has been proposed within the AH EU
project [2].

In this paper, for the sake of easy and full understandability,
we present a description of AHF in the novel context of the
AHT EU project. In particular, the core parts of AHF will be
described along with their functionalities. In addition, the full
procedure to interact with AHF and all the steps required for
service fruition will be detailed. Then, we originally introduce
and define the concept of AH tools and tool-chain process for
Industry 4.0. By delving into finer details, we exploit AHF
to provide common and interoperable tools to improve the
associated engineering process. In addition, the paper provides
implementation insights about a real deployment of an AH
Local Cloud (LC) with all the steps to deploy the AH Core
Services and to develop service producers/consumers.

II. RELATED WORK

When first IoT ecosystems emerged, the predominant
deployment approach was monolithic or ad-hoc in the
mostly cases. More recently, innovative approaches have been
adopted: novel IoT deployment solutions are moving close
to SOA, in which any IoT object is an entity capable of
consuming or producing services. In this context AHF emerges
[2]. AHF is the result of an EU project, funded by the Artemis
Industry Association, with the collaboration of more than 80
partners among companies and universities. AHF has been
designed with the idea of supporting IoT automation scenarios
at every level, and it bases its approach on the key guidelines
that characterize SOA. service lookup, late binding, and loose
coupling [3]. AHF is extensively used in many EU projects,
i.e., AHT, Productive 4.0, Far-Edge, just for naming a few [4]-
[6]. In [7], a first large overview on the framework is given.
Varga et al. provide an high level description of the framework
characteristics and how it supports the systems integration
and interoperability by defining the concept of System of
Systems (SoS). It also addresses the problem of inter-cloud
communication and service fruition in AHF by presenting the
two systems that enable the communication among two entities
located in different Clouds [8].

AHF has already been used in real case applications. For
example, in [9], the framework has been adopted to integrate
devices for structural condition monitoring with services for
analytic published on the framework. The integration of sys-
tems and the adaptation of legacy systems are two goals for

novel IIoT environments: an AHF-based service able to ease
integration procedures has been presented in [10].

Several studies helped to overcome some limitation AHF
originally had. In [11], the re-engineering of an AH appli-
cation has been proposed to overcome maintainability issues
in the application code and to ease the addition of new
functionalities or the versioning upgrade. Another work to
improve an AHF component is presented in [12]. Rocha et
al. propose an upgrade of the Event Handler system based
on the publish/subscribe paradigm to improve performance in
terms of CPU and quality of service. With the emerging of the
Industry 4.0 paradigm, some works tried to extend AHF to be
more tailored to this perspective. In [13], a Non-Intrusive Load
Monitoring (NILM) toolchain development based on AHF has
been proposed. While a OPC Unified Architecture (OPC-UA)
service integration with AHF has been presented in [14].

Of course, many other IoT frameworks for IToT exist in
addition to AHF, each one with its own specific features and
peculiarities [15].

III. ARROWHEAD FRAMEWORK FOR INTEROPERABILITY

AHF has been designed with the goals of enabling IoT in-
teroperability, automating system engineering, providing scal-
ability, security, and real-time data management. The primary
idea is that AHF should be able to turn any IoT device or
system into a service available at the Cloud level, in order to
ease availability, interoperability, and usability.

A. The Arrowhead Framework Architecture

The AHF architecture is based on the concept of Local
Cloud (LC). A LC is defined as a separated set of IoT objects
and industrial things geographically close to each other. Each
LC has its own set of AH Core Services (CSs) that enable
all the main features traditionally present in SOA scenarios,
such as service lookup, late binding, and loose coupling.
AHF aims to overcome system and device heterogeneity by
providing a common infrastructure with standardized inter-
faces for providing and consuming services. More in detail,
the framework aims to fully decouple service providers and
consumers in order to reach the complete interoperability.
AH defines a common and standard interfaces that allow the
heterogeneous systems supporting HTTP to be AH compliant.
A system in the AH environment is a entity capable of
providing and/or consuming services. The service fruition is
point-to-point between provider and consumer, while all the
communication, negotiation, discovery and service lookup op-
erations are demanded to the framework. The interoperability
among different systems and devices has a pivotal importance
in the IoT scenario where the number of connected devices has
largely surpassed the world population, and it becomes even
more crucial with the emerging of Industry 4.0 paradigm. The
AH project provides several core services, partly mandatory
and partly optional to be implemented and/or deployed. An
AF-compliant LC must have at least the AH mandatory core
services installed and running. The mandatory CSs allow
industrial systems and IoT objects to be seen and used as

AH Services. All the LCs are connected to each other with a
mesh topology network, thus allowing an AH Service to use
(or to be used by) other services located in a different LC.
The mandatory AH CSs provide service registration, lookup
functionalities, orchestration and security services. The AH
mandatory CSs are those services that actually enable the LC
and allow third-party services to interact to each others. An
AF entity can be a Service Consumer (SC), a Service Producer
(SP), or both of them. It is also possible to develop an AH
adapter capable of wrapping legacy systems in order to make
them AH compliant.

Fig.1 highlights the AH LC model. Fig.1 outlines the typical
entities composing an AH LC, AHF services (colored boxes)
and user-defined services (gray boxes). Any user-defined
service can provide or consume other user-defined service
through AH CSs. More specifically, the Fig.1 depicts all the
three mandatory CSs, Service Registry, Orchestration System,
and Authorization System, and the two main support CSs,
Gatekeeper System, and Gateway. The concise description of
the mandatory CSs is provided below.

1l Authorization
System

Arrowhead
Local Cloud

I T T £, e -
' T Legacy |

d I i i System E
L e -

Fig. 1. Arrowhead Local Cloud Architectural Model.

Service Registry
It provides service registration functionalities and
acts as service repository. It stores all the meta
information of the registered services such as service
description, IP and port, transport, communication
protocols, interfaces, etc. It is also responsible for the
service lookup by other services. The service lookup
operation is executed by using the DNS-SD lookup
protocol [16].

Orchestration System
It is the AH service in charge of coordinating the ser-
vices’ interactions through the framework. Orchestra-
tion System is responsible to match the consumers’
requests with the services available on the Service
Registry. This system can dynamically select the
service producer that best fits the requester needs. In
addition, the Orchestrator is also responsible for load

balancing and fault tolerance on service producer
side.

Authorization System
This system manages the correct fruition of the
services. Indeed, the Authorization System is respon-
sible of granting the rights and permissions for the
service fruition.

In the AH LC, there typically are two support services
deployed, Gatekeeper System and Gateway System. These
two services are optional, and a LC can work even if they
are missing. Although they are not mandatory, Gatekeeper
and Gateway Systems are often deployed in any LC because
they are responsible for communication between different LCs.
More in detail, the Gatekeeper System is responsible for the
inter-cloud orchestration process. It manages the control in-
formation for the inter-cloud communication, it is not directly
responsible of the data flow between producer and consumer.
The Gatekeeper System internally consists of two services,
Global Service Discovery (GSD), and Inter-Cloud Negotiation
(ICN). GSD locates the best fitting service in the neighboring
Clouds. The ICN is responsible for establishing mutual trusted
connection between the two LCs, then the actual connection
between the endpoints is built. The Gatekeeper System tightly
works with the Orchestration Systems of the two LCs. The
Gateway has two main tasks, it establishes a session between
producer and consumer, and it is responsible to manage it once
established. The Gateway is the mediator between producer
and consumer. It provides the interfaces for connecting to the
producer/consumer and then all traffic flows through it. Table I
lists some other support CSs provided by AF along with their
main features. As already stated, they are not mandatory and
may be deployed depending on specific use case requirements.

TABLE 1
AH SuprPORT CORE SERVICES

Service Features
pub/sub event support

Service Name
Event Handler

System and Device Registry Un/Register Devices and their systems

Quality of Service (QoS)
Manager and Monitor

Monitor Service QoS and Support to
Service Level Agreement (SLA)

Translation Supports languages translation

System Configuration Tools to Define and Manage System

Configuration

B. Service Fruition in AF

Interoperability is the key principle on which AF is based.
Two completely different, or even legacy, systems can ex-
change services to each other through AF. More formally, an
AF System is that entity in the framework which provides or
consumes services. A System can provide one or more services
and at the same time it can consume one or more other ser-
vices. An AF service is defined as what it is exchanged from a
providing to a consuming System. To provide and/or consume
an AF service, a specific procedure has to be followed, as
depicted in Fig.2 and detailed below.

Lookup Authorize

Service
Registry

Orchestrator Authorization

Publish Request

_Q
Service
Consumer

Service
®)
5

Service
Provider

Fig. 2. In-Cloud Service Fruition Steps

1) In the first step the service producer publishes the
service and its metadata on the AH Service Registry. In
this way the service became available and theoretically
accessible to all AH users. The metadata published on
the Registry contains several types of information, for
example producer endpoint, authorization information,
service interface and protocols, etc.

2) Service consumer queries the AH Orchestrator System
with the data about itself and the service it wants to
consume.

3) The Orchestrator System queries the Service Registry
with the requested service information and it tries to
provide the service lookup.

4) The Orchestrator System queries the Authorization Sys-
tem and checks the rights for consuming that provider’s
service.

5) If consumer’s service request matches with one or
more services registered on Service Registry, and the
Authorization Systems grants the service fruition, the
Orchestration System provides the service look up in-
formation to the consumer. The information contains the
service producer endpoint, the interface for invoking the
service, the protocol used, etc. The service consumer
starts to consume the service.

It is worthy to note that the actual service fruition is
performed in a point-to-point manner between producer and
consumer; AF is not involved any longer. From the stages
above listed, it emerges that the framework is exploited only
in the control flow of the service fruition, the discovery, the
security matter, the providers’ load balancing and dispatching,
etc.. The actual data flow is directly performed producer to
consumer, in a end-to-end manner.

IV. TooLS FOR INDUSTRY 4.0

A common trend in Industry 4.0 is to shift from a
SCADA/DCS-driven organization of components to a net-
worked IoT ecosystem where each entity is responsible for
producing or consuming services. AHF has proven to be a
valid candidate for IoT integration not only in IToT scenarios,
but also in the engineering phases of industrial products, being

them software or hardware. In order to cover such needs, the
AHT project! aims to use AHF as the glue between tools
operating in different phases of the engineering process.

A. Arrowhead Tools and Tool Chain

Industry processes need an agile way to cover the en-
gineering process of products and artifacts. Within the last
months, AHF has shifted its use to promote the cooperation
of engineering tools, rather than application systems. The
major difference between the two concepts relies on the fact
that application systems are components that interact within
a steady-state instance of the System of Systems, whereas
engineering tools are pieces of software (occasionally hard-
ware) that interact throughout the engineering process of an
artifact until its release and support its definition, development,
deployment, and maintenance. More in detail, the AHT project
assumes as a baseline the ISO/IEC 81346 waterfall model [17]
which has been extended with two new phases: evolution and
training. The resulting model is shown in Figure 3 with the
eight process phases and their input and output interfaces. In
particular, the engineering process is defined by four main
entities:

« Engineering Process Phase (EPP) is a phase of the
engineering process that cover all the actions performed
against the realization of an artifact.

« Engineering Process Provider Interface (EP-PI) (some-
times called Engineering Process Qutput) is the way the
outcome of the set of tools operating throughout an EPP
is delivered for being consumed.

« Engineering Process Consumer Interface (EP-CI) (some-
times called Engineering Process Input) is the way the set
of tools operating throughout an EPP receives inputs from
the previous phases.

« Engineering Process Unit (EPU) is a superclass identify-
ing one of the three concepts expressed above.

It is important to state that the EPPs are not in chronological
orders, as many use cases may use the EPPs in a discontinuous
way as well as performing more iterations. For this reason,
this guideline is considered more as a meta-process where
phases can be scheduled in different orders on top of the
correspondence between EP-PIs and EP-Cls.

Now, the AHF brings a significant boost to this engineering
process — we will hereafter refer to it as the Extended Au-
tomation Engineering Model (EAEM)— by defining a number
of AH Engineering Tools that must support the industrial
process within and between each phase. An AH Tool — we will
hereafter refer to it only as Tool — is a software or a hardware
(together with adequate software) artifact that supports Cyber-
Physical System of Systems. Tools are not mandatory, i.e.
phases of the engineering process can still be carried out
without them, however it means that there will be a strong
human component. Depending on the EPP it refers to, it
can pursue tasks at design-time or at run-time. A Tool is
necessarily either an AH Provider or a Consumer, in short,

!https:/fwww.arrowhead.eu/arrowheadtools

an application system with the specific purpose of supporting
one or more EPPs and it cannot be broken down conceptually
in subtools that work separately, in short, it is an atomic
entity. Most importantly, a Tool is defined as such only when
it can be part of a Toolchain, by interacting automatically
with other Tools throughout other EPPs. A Toolchain, as a
consequence, is a collection of Tools that interacts without
human intervention thanks to the AHF, which allows, loose
coupling, late binding and Tool reuse/replacement. In fact, the
trend within the project would be to put a set of orchestration
rules within the Orchestration System involving the Tools, an
example of it can be seen in [18]. This is how AH Toolchains
are defined. A simple example might be given by a sensor
monitoring scenario: within the procurement and engineering
phase the right sensors have to be listed and purchased for
the task, in the deployment and commissioning phase sensors
have to be configured with the right parameters and placed
in the right spot on the field, finally, in the operation and
management phase the wakeup-sleep life cycle of sensors have
to be scheduled correctly in order to preserve battery life and
still monitor the phenomenon of interest. These three phases
can be covered by three Tools and such Tools need, in turn, to
expose their outputs in a unified way, so that it is consumable
by the next one. An example of a more complex AH Toolchain
for Home Automation Scenarios is found in [19].

B. Tool Implementation Insight

We have implemented and deployed our own AH LC at the
University of Bologna (Unibo). We created our AH-compliant
environment by deploying the three mandatory CSs on our
private server; this environment is now working and is used
by the whole Italian cluster (IUNET) inside AHT [4]. The
server hosting the AH CSs have the characteristics listed in
Table II. The entire IUNET refers to this server as the AH CSs
server, all the interactions among tools, systems, and services
that requires AHF mediation pass through it.

TABLE 11
AH UNIBO SERVER

CPU Intel Core 17-920 @ 2.67GHz
Number of Cores 4

Thread per Core 2

Cache 8 MB

RAM 8 GB

Hard Disk 500GB

As already stated in Section III, the mandatory AH CSs
defining a LC are Service Discovery, Orchestration System,
and Authorization System. These three components constitute
the minimum set of services to create an AH LC and to
allow third party services and systems to interoperate to each
other through AHF. The installation of such services requires
some additional components. The first necessary accessory
component for the CSs installation is Docker [20]. Docker is
crucial in the services installation because AHF exploits the
containerizaion to deploy the CSs themselves and a database.

){Requlrements }0)[

Training & .
Materials

W /

EPB

. —

EP-PI

ent & | .| Deployment & +| Operation& | . i
ing]? '\{Commissoninglq)[Management 14 Waintananos |2 R M
) \ [

|
4 |
|

EP-CI ~ EPU

Fig. 3. Engineering process use in the Arrowhead Tools project

The database is another crucial accessory component needed to
correctly install and run the CSs. Indeed, it is used by Service
Registry to store the information about the registering services.
The RDBMS adopted by AH project is Oracle MySql version
5.7+. The CSs are provided by AH project, they are written
in Java and it is required at least the JDK/JRE 11 installed on
the server. The AH CSs are based on Spring Framework and
deployed as Spring services. AH exploits the functionalities
provided by Spring framework in order to obtain flexibility,
modularity, and a easy web access. The code of the AH CSs
is open source and available at [21]. Once all the required
components are installed, the code can be compiled and the
services are ready to be configured. At this point, the LC is
created but it is necessary to configure the networking settings
in order to allow the services to see and interact to each other.
Each CS has a specific file named application.properties. This
file contains all the network settings that can be tuned in order
to proper configure the AH LC. Each CS has its own properties
file, this file has a standard format among all the CSs and it
is composed by three main section:

Application Parameters:
This section contains all the settings of the general
application, such as the database connection param-
eters, the Spring Framework parameters to interact
with the persistency layer, and the specific service
end point information.

Custom Parameters:
It addresses all those parameters that have to be
properly tuned according with every specific de-
ployment. These parameters are: service name, the
Service Registry endpoint, and some other service-
specific parameters (i.e. in the Orchestrator file, a flag
to enable the interaction with the Gatekeeper System
and the Gateway).

Security Mode:
This section contains all the security related param-
eters. More in detail, the AHF lays the security
features on the certificates system. This section con-
tains all the certificate information and authorization
parameters.

Once the property files of the CSs are properly tuned the
services jars can be launched and the services will be up and
running at the specified endpoints. The default deployment
properties will expose the services at localhost, ports: 8443,
8445, 8441, for Service Registry, Authorization, and Orches-
trator respectively. A Swagger with the services API will be

available at the each CS entry point. Once the CSs are running,
a provider can publish a service and a consumer can search for
a specific service, obtain the provider’s endpoint, and finally,
consume the service. In [22], the skeletons to develop a full
AH compliant producer and consumer are published, but some
further steps are needed in order to proper perform the service
fruition. First of all, the producer has to define the interface of
the service it wants to provide. The service definition contains
all the information about the service itself and the service
producer; this definition is written in JSON. Each service has
to be registered on the Service Registry. The registration has
to be performed with a HTTP/POST call to Service Registry
in JSON.

icureg LIy rug Tater A s

Furen et |

Fig. 4. Example of Service Registration Call and possible Response

As shown in Fig.4, the input JSON parameter of the reg-
istration call contains information about the service provider
endpoint, some additional metadata, a property for the service
validity, and the information about the service itself. After
the service registration, it is necessary to create an autho-
rization rule to grant the access to the specific consumer.
The authorization rule has to be created by a HTTP/POST
call to Authorization System. This call has to be done to
the management interface of the Authorization System by
specifying which service can be consumed. This rule can be

valid for inter-cloud, and/or intra-cloud requests. An example
of authorization rule creation is depicted in Fig.5.

Fig. 5. Example of Authorization Rule Creation

As shown in Fig.5, the HTTP/POST call requires as input
parameter a JSON containing the consumer ID, the interface
(can be multiple), the provider (can be multiple), and the
service definition (can be multiple). At this point, all the pre-
liminary steps for service fruition are done, and the consumer
can look for the service and consume it. The producer and
consumer are developed as Java Spring Boot applications.
Their skeletons are available on this repository [22].

V. CONCLUSIVE REMARKS

In this paper we have presented AHF and the procedure
needed for an AH-compliant service fruition. Most impor-
tantly, this paper has originally described the concept of
tool and toolchain for AH environments. Moreover, a real
implementation of the AHF ecosystem has been presented:
we have successfully deployed an AHF instance at Unibo and
originally described here its main implementation insights; this
deployment is currently used as reference framework for the
development of the IUNET use cases in the AHT project.

ACKNOWLEDGMENT

This research is funded by the ECSEL JU under grant
agreement No 826452 (Arrowhead Tools), supported by the
EU H2020 programme and by the member states.

REFERENCES

[1] H. Geng, THE INDUSTRIAL INTERNET OF THINGS (1loT). Wiley,
2017, pp. 41-81. [Online]. Available: https:/fieeexplore.icee.org/
document/8044783

[2] Artemis. (2013) Arrowhead Framework. [Online]. Available: https:
/iwww.arrowhead.eu/arrowheadframework/

[3] H. P. Breivold and M. Larsson, “Component-based and service-oriented
software engineering: Key concepts and principles,” in 33rd EUROMI-
CRO Conf. Software Engineering and Advanced Applications. 1EEE,
2007, pp. 13-20.

[4]

(5]
(6]

(7]

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(2019) Arrowhead Tools curopean investment for digitalisation and
automation leadership. [Online]. Available: https:/www.arrowhead.cu/
arrowheadtools

(2017) Productive 4.0. [Online]. Available: https://productive40.eu/
(2016) Far-Edge factory automation edge computing operating system
reference implementation. [Online]. Available: http://www.faredge.eu/#/
P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and I. M. de Soria, “Making system of systems
interoperable — the core components of the arrowhead framework,”
Journal of Network and Computer Applications, vol. 81, pp. 85 - 95,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1084804516301965

P. Varga and C. Hegedus, “Service interaction through gateways for
inter-cloud collaboration within the arrowhead framework,” 5th IEEE
WirelessVitae, Hyderabad, India, 2015.

1. Campos, P. Sharma, M. Albano, E. Jantunen, D. Baglee, and L. L.
Ferreira, “Arrowhead framework services for condition monitoring and
maintenance based on the open source approach,” in 2019 6th Conf.
Control, Decision and Information Technologies (CoDIT), April 2019,
pp. 697-702.

S. Maksuti, M. Tauber, and J. Delsing, “Generic autonomic management
as a service in a soa-based framework for industry 4.0,” in IECON Conf.,
vol. 1, Oct 2019, pp. 5480-5485.

T. Pedersen, M. Albano, and B. Nielsen, “Reengineering the lifecycle of
arrowhead applications: from skeletons to the client library,” in JECON
Conf., vol. 1, Oct 2019, pp. 5519-5524.

R. Rocha, C. Maia, L. L. Ferreira, and P. Varga, “Improving and
modeling the performance of a publish-subscribe message broker,” in
IECON Conf., vol. 1, Oct 2019, pp. 5493-5498.

D. Brunelli, T. S. Cinotti, H. Woehrl, C. Aguzzi, F. Montori, and
L. Benini, “An interoperable tool-chain for energy monitoring appli-
cations,” in AEIT Conf., Sep. 2019, pp. 1-6.

A. N. Lam and O. Haugen, “Implementing opc-ua services for industrial
cyber-physical systems in service-oriented architecture,” in I[ECON 2019
- 45th Annual Conference of the IEEE Industrial Electronics Society,
vol. 1, Oct 2019, pp. 5486-5492.

H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in 2015 IEEE 20th
Conf. Emerging Technologies Factory Automation (ETFA), Sep. 2015,
pp. 1-8.

S. Cheshire and M. Krochmal, “Dns-based service discovery,” REC
6763, February, Tech. Rep., 2013.

1SO Central Secretary, “Industrial systems, installations and equipment
and industrial products — structuring principles and reference
designations,” International Organization for Standardization, Geneva,
CH, Standard IEC 81346, 2019. [Online]. Available: https:/fwww.iso.
org/standard/75265. html

C. Paniagua, J. Eliasson, and J. Delsing, “Efficient device-to-device
service invocation using arrowhead orchestration” IEEE Internet of
Things Journal, 2019.

D. Brunelli, T. S. Cinotti, H. Woehrl, C. Aguzzi, F. Montori, and
L. Benini, “An interoperable tool-chain for energy monitoring appli-
cations,” in 2019 AEIT Conf. 1EEE, 2019, pp. 1-6.

Docker Inc. (2019) Docker containerization technology. [Online].
Available: https:/www.docker.com/

Arrowhead Framework Development Organization. (2019) Arrowhead
Framework repository. [Online]. Available: https:/github.com/
arrowhead-f

(2019) System of Systems Example repository. [Online].
Available: https:/github.com/arrowhead-f/sos-examples-spring

