Arrowhead Tools

A European Investment for Automation and Digitalisation Leadership

Arrowhead Tools

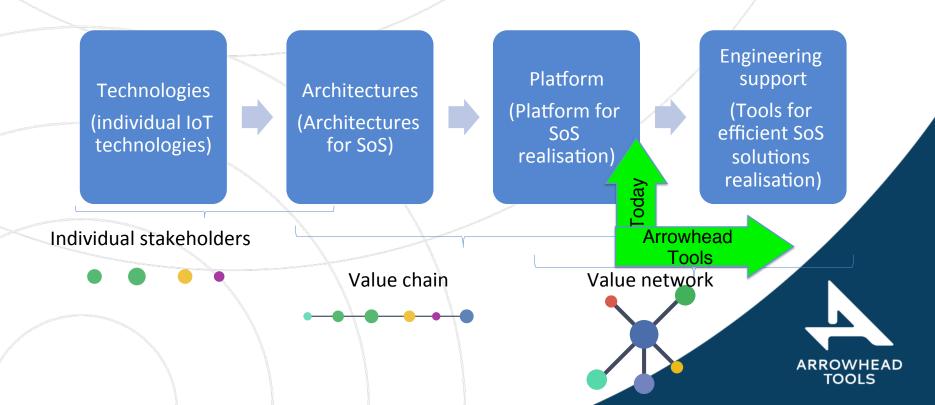
Joint European effort in 18 countries Coordinator: Prof. Jerker Delsing, Lulea University of Technology

Arrowhead Tools

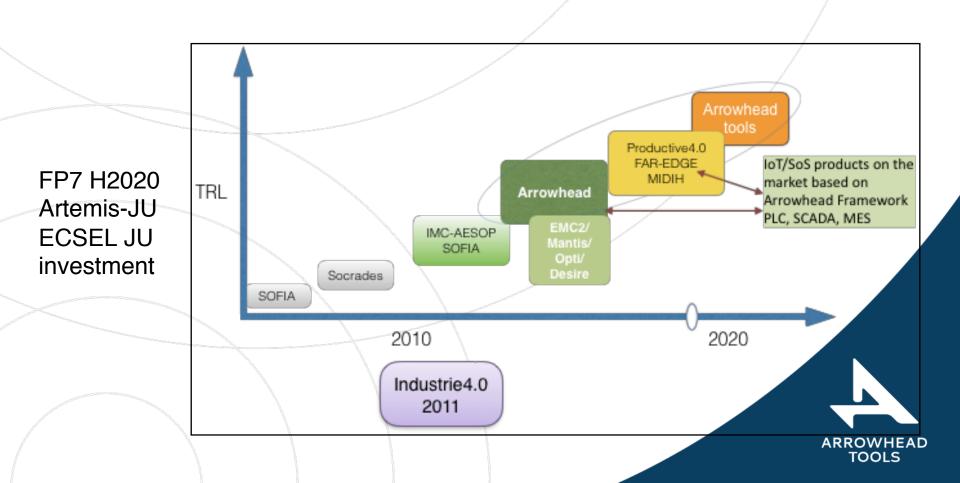
Europes larges Automation and Digitalisation Engineering project

80 partners

90 M€ budget

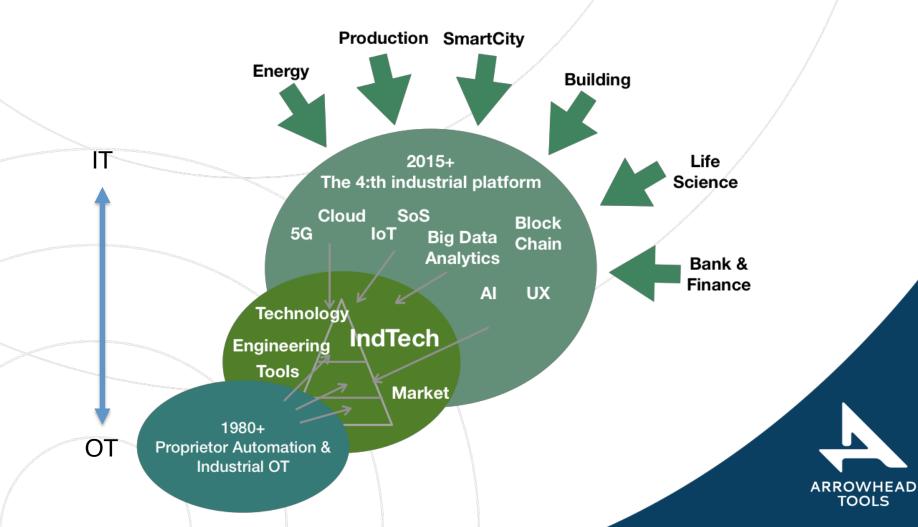

Duration 2019-2022

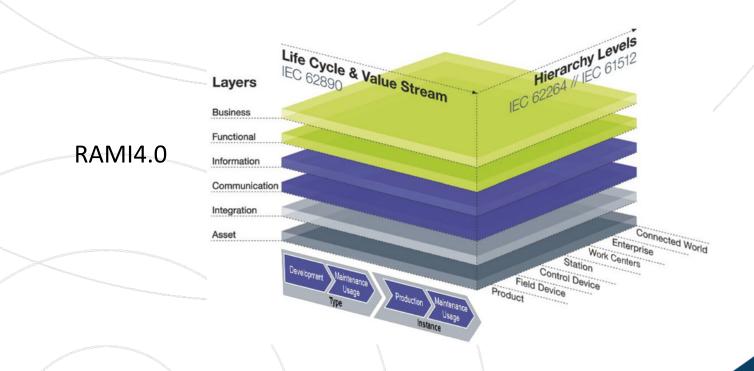
Partners: Bosch, ABB, Infineon, ST-Microelectronics, Philips, ASML, Mondragon, Volvo, Boliden,



EU and Industry project investments

- Software Key Enabling Technologies
- Solution engineering efficiency and platforms key for fast industrialisation


IoT and Industry 4.0 project time line


Arrowhead Tools Focus

OT meets IT

Real and efficient implementation of next generation automation architecture - Industry4.0

Implementation and integration

Service Oriented Architecture

Implementation and Integration Frameworks

Arrowhead Framework

Autosar

BaSys

FiWare

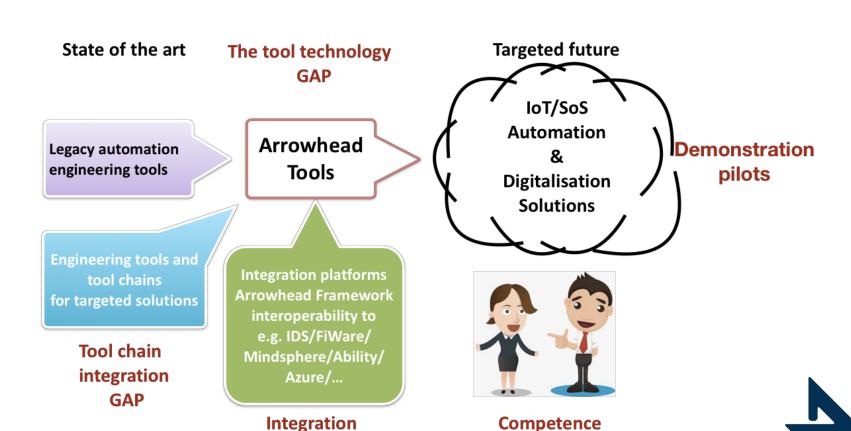
IDS

IoTivity

lwM2M

OCF

Technology comparison


Features	Arrowhead	AUTOSAR	BaSyx	FIWARE	IoTivity	LWM2M	OCF
Key principles	SOA, Local Automation Clouds	Runtime, Electronic Control Unit (ECU)	Variability of production processes	Context awareness	Device-to-device communication	M2M, Constrained networks	Resource Oriented REST, Certification
Real-time	Yes	Yes	No	No	Yes (IoTivityConstrained)	No	No
Run-time	Dynamic orchestration and authorization, monitoring, and dynamic automation	Runtime Environment layer (RTE)	Runtime environment	Monitoring, dynamic service selection and verification	No	No	No
Distribution	Distributed	Centralize	Centralize	Centralize	Centralize	Centralize	Centralize
Open Source	Yes	No	Yes	Yes	Yes	Yes	No
Resource accessibility	High	Low	Very low	High	Medium	Medium	Low
Supporters	Arrowhead	AUTOSAR	Basys 4.0	FIWARE Foundation	Open Connectivity Foundation	OMA SpecWorks	Open Connectivity Foundation
Message patterns	Req/Repl, Pub/sub	Req/Repl, Pub/sub	Req/Repl,	Req/Repl, Pub/sub	Req/Repl, Pub/sub	Req/Repl	Req/Repl
Transport protocols	TCP, UDP, DTLS/TLS	TCP, UDP, TLS	TCP	TCP, UDP, DTLS/TLS	TCP, UDP, DTLS/TLS	TCP, UDP, DTLS/TLS, SMS	TCP, UDP, DTLS/TLS, BLE
Communication protocols	HTTP, CoAP, MQTT, OPC-UA	НТТР	HTTP, OPC-UA	HTTP, RTPS	HTTP, CoAP	CoAP	НТТР, СоАР
3 rd party and Legacy systems adaptability	Yes	Yes	Yes	Yes	No	No	No
Security Manager	Authentication, Authorization and Accounting Core System	Crypto Service Manager, Secure Onboard Communication		Identity Manager Enabler	Secure Resource Manager	OSCORE	Secure Resource Manager
V Standardization	Use of existing standards	AUTOSAR standards	Use of existing standards	FIWARE NGSI	OCF standards	Use of existing standards	OCF standards

Industrialisation

We need Engineering tools

The engineering tool GAP Arrowhead Tool focus

platform

maturity

Competence

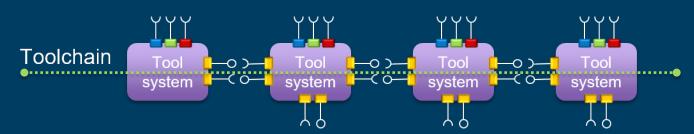
GAP

ARROWHEAD

TOOLS

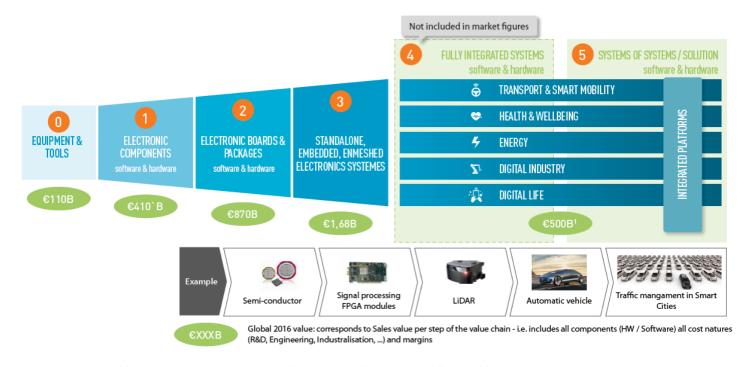
www.arrowhead.eu

Engineering efficiency improvements Validation and verification in 21 advanced use cases



- Automotive
- Mining
- Electronics

- Software
- Building Sector
- Offshore


Market

Value is shifting across the CPS value chain (1/2) Today value is concentrated at 75% upstream

advancy

Note: rounded figures. (1): 2025 estimate value potential for the Internet of Things, not the full potential for ECS end-applications. Source: Decision, IDC, MGI, Advancy analysis

Value is shifting across the CPS value chain (2/2) By 2025, 2/3rd of the value will be captured downstream

SET-UP EFFICIENT SUPPLY CHAINS & REACH CRITICAL MASS WITH VOLUMES

SAFEGUARD EU SOVEREIGNTY THROUGH TECHNOLOGAL CAPABILITIES

Key succes factor

For the EU

advancy Not included in market figures Global 2016 value **FULLY INTEGRATED SYSTEMS** SYSTEMS OF SYSTEMS / SOLUTION €XXXB Global 2025 value TRANSPORT & SMART MOBILITY STANDALONE **ELECTRONIC BOARDS &** EMBEDDED, ENMESHED **ELECTRONIC** INTEGRATED PLATFORMS **EQUIPMENT & HEALTH & WELLBEING** PACKAGES ELECTRONICS SYSTEMES TOOLS 10% **ENERGY** EU share 10% 25% 15% DIGITAL INDUSTRY €1,685B €200B €800B €1,500B DIGITAL LIFE €3,200B **SOFTWARE CONTENT: < 10%** SW CONTENT: > 30% MOVE FROM PRODUCTS TO SOLUTIONS EU share EU share €3,900B to €3,200B 25-30% €1,685B €11,100B

Industry Association

Note: rounded figures. (1): 2025 estimate value potential for the Internet of Things, not the full potential for ECS end-applications. Source: Decision, IDC, MGI, Advancy research & analysis

Coservative

estimate: IoT only

COMPETITIVENESS

BUILD SELF-AMPLIFYING NETWORKS & AGILE ECOSYSTEMS

CREATE EUROPEAN GLOBAL MARKET LEADERS, ENSURING EU

The enabling factor

Radical Solution Engineering Cost Reduction

The Grand Challenges

The Arrowhead Tools grand challenges are:

- Engineering cost reduction by 20-50% for a wide range of IoT and SoS automation/digitalisation solutions.
- Tool chains for IoT and SoS digitalisation/automation engineering and management, adapted to:
 - existing automation and digitalisation engineering methodologies and tools
 - new IoT and SoS automation and digitalisation engineering and management tools
 - security management tools
- Efficient training of professional engineers

Arrowhead Tools - technology advancement

- Mature interoperability framework Arrowhead Framework v5.0
- Engineering tool interoperability and tool chain integration
- Engineering tools for IoT, SoS and legacy automation solution engineering
- Training material for professionals, hardware and software

Engineering efficiency improvements Validation and verification in 21 advanced use cases

- Automated Formal Verification
- Engineering processes and tool chains development of a digitalized and networked diagnostic imaging
- Integration of electronic design automation tools with product lifecycle tools
- Interoperability between (modelling) tools for cost effective lithography process integration
- Support quick and reliable decision making in the semiconductor frontend manufacturing process
- Production preparation tool chain integration
- · CNC machine automation
- · SoS engineering of IoT edge devices
- Machine operation optimisation
- Rapid HW development, prototyping, testing and evaluation
- Configuration tool for autonomous provisioning of local clouds
- Communications Validation & Operational Monitoring

- Digital twins and structural monitoring
- Deployment engine for production related sensor data
- Smart Diagnostic Environment for Contactless Module Testers
- Virtual Commissioning of a Cyber-Physical System for increased flexibility
- Production Support, Energy Efficiency, Task Management, Data Analytics and Smart Maintenance
- Linking Building Simulation to a Physical Building in Real-Time
- Secure sharing of IoT generated data with partner ecosystem
- Deployment and configuration
- Smart maintenance for industrial devices monitoring

- Elastic Data Acquisition System
- Smart testing
- · Data based digital twin for electrical machine condition

Engineering efficiency improvements Validation and verification in 21 commercially motivated use cases

- Automated Formal Verification
- Engineering processes and tool chains development of a digitalized and networked diagnostic imaging
- Integration of electronic design automation tools with product lifecycle tools
- Interoperability between (modelling) tools for cost effective lithography process integration
- Support quick and reliable decision making in the semiconductor fron- tend manufacturing process
- Production preparation tool chain integration
- CNC machine automation
- SoS engineering of IoT edge devices

- Machine operation optimisation
- Rapid HW development, prototyping, testing and evaluation
- Configuration tool for autonomous provisioning of local clouds
- Communications Validation & Operational Monitoring
- Digital twins and structural monitoring
- Deployment engine for production related sensor data
- Smart Diagnostic Environment for Contactless Module
 Testers
- Virtual Commissioning of a Cyber-Physical System for increased flexibility
- Production Support, Energy Efficiency, Task

 ARROWHEA

 Management, Data Analytics and Smart MaintenanceOOLS

Technology

Arrowhead Framework and integrated engineering tool chains

Technology Properties

Implementation of Automation and Digitalisation solutions

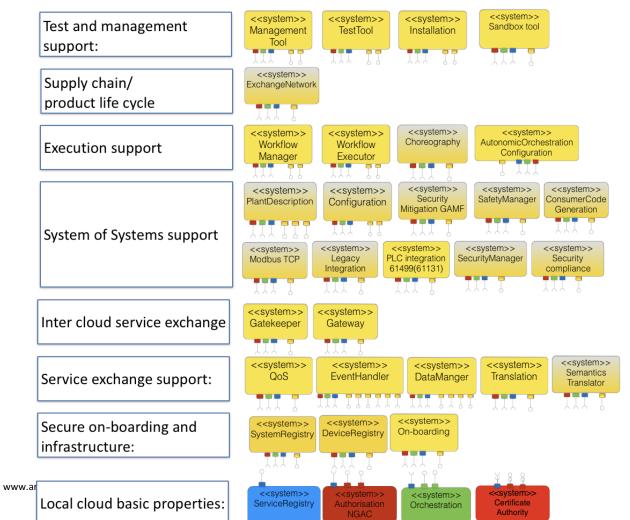
In production

In product

Real time capabilities

Security

Multi level security


Run-time engineering

Evolvable solutions

On-site validation and verification

Arrowhead Framework v4.1.3

Impact

- Cost-efficient, real-world integrated large-scale digitalisation and automation!
- More automation for invested €
- Leading to production efficiency, jobs, environmental footprint reduction, ...

