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IoT-SoS Architectures & Platforms

Fig. 7. Summary

LwM2M and OCF) are limited to the use of their own
standards.

D. Security

Security, privacy and trustworthiness remain important chal-
lenges in the IoT field. All the different frameworks have
security features and components capable to manage the
security of their services and resources.

In the case of Arrowhead, the core system AAA implements
Authentication, Authorization and Accounting. It is possible
to choose between two levels of security, with or without
DTLS/TLS: (1) use of the X.509 certificates and (2) use of
tokens for accounting. In addition, the access control can
be made by authorization rules or Next Generation Access
Control policies [40]. AUTOSAR bases its security on the
AUTOSAR Crypto Service Manager (CSM) and the Secure
Onboard Communication (SecOC) modules. SecOC is in
charge of the resource-efficient authentication and makes use
of the cryptography services which CSM provides.

FIWARE specifications present [41] the Identity Manage-
ment Enabler (IdM), which provides authentication, basic
authorization and security assertions as a service. This core
security GE uses open protocols such as OAuth [42] and
OASIS SAML v2.0. [43]. The IdM manages the authorization
in collaboration with the PEP proxy GE and the Authorization
PDP GE.

The IoTivity stack includes a Secure Resource Manager
(SRM) [44], which is formed by three functional blocks and
a Database. The Resource Manager (RM) that manages the

security virtual resources (e.g., access control list, credential,
provisioning status). The Policy Engine (PE) filters resource
requests in order to grant or deny based on the policy, and the
Persistent Storage Interface provides storage API. The SRM
is configured via an OIC resource with specific properties.

LWM2M requires that all communications be authenti-
cated, encrypted and integrity protected. For this purpose,
the LwM2M 1.1 specification supports an application layer
security protocol called OSCORE. OSCORE (Object Security
for Constrained RESTful Environments) protects message
exchanges and provides support for proxy operations and end-
to-end security.

In the OCF security specifications [45], the OCF security
enforcement points are established, including The Secure
Resource Manager (SRM) and the session Protection in the
connectivity Abstraction layer (Usually DTLS), which are
configured via OIC resources. The access control relies on
predefined policies that are stored by a local access control
list (ACL) or an Access Management service (AMS) in the
form of an Access Control Entry (ACE). The access control
can be Subject-based (SBAC) or Role-based (RBAC).

V. CONCLUSION

Over the last decade, technology has evolved very rapidly. In
addition, functionalities and characteristics of frameworks are
also developing quickly as well as the protocols and standards
from which they are developed. Even the alliances and groups
are changing over the years, grouping platforms under the
same name and specifications.



Very large scale IoT and SoS emerging and 
evolving characteristics

• Highly distributed and heterogeneous solutions 
• Very large-scale SoS, 105 - 1010 IoTs  
• IoT error and maintenance and mitigation 
• SoS run-time dynamics 
• SoS functionality evolution 
• SoS scalability   
• SoS segmentation for real-time operations, security, safety, ... 
• SoS self-mitigation 
• SoS self-engineering 
• SoS self-management 
• Machine to machine business models 
• Machine to machine nano-transactions 
• Multi-stakeholder autonomous integration and operations 
• Management strategies and policies of SoS properties e.g. 

• Operations, Functional evolution, Functional degradation and maintenance, 
Functional engineering, Security, Safety, Quality of service



Emerging and evolving architectures

• Distribution and run-time dynamics 
• SoS segmentation and scalability 
• Run-time engineering 
• Run-time management 
• Technology evolution 
• SoS self engineering 
• SoS self mitigation 
• SoS business models and nano transactions
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• Run-time engineering 
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Distribution and run-time dynamics 

• Flexible production  
• Flexible automation



Distribution and run-time dynamics

• Flexible automation 
• Decentralised and 

virtualised production 
system 

• Based on  
Arrowhead Framework
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Fig. 5. Model of CPS that interact collaboratively in a physical environment
(gray) via some service-oriented architecture (white) by exchange of messages
m translated by a function TAB that we propose to compose of encoders
and decoders of aligned autoencoders.

Fig. 6. Illustration of the backtranslation architecture for CPS A. A similar
structure is used for CPS B.

test sets of size 60000, 10000, and 10000 samples. The training
data samples were chosen randomly from the first half of the
week of simulation messages, and the validation and test sets
were taken from the later half of the week. Validation and test
samples were also chosen randomly (with no overlap between
these sets), but the same samples were taken from messages in
CPS A and CPS B. After splitting the data into smaller sets,
the value terms in each message was normalized such that the
training data had mean zero and unity standard deviation.

B. Model Architecture

The model is based on the mathematical definitions intro-
duced in [9], see Figure 5, and it includes four essential building
blocks: Encoders and decoders for messages in domain A and
B. Each of these encoder/decoder blocks consists of an input
layer, hidden layer and output layer, and the number of units
in each layer is mirrored for each encoder decoder pair. For
example, the A encoder has 14 input, 8 hidden, and 2 output
units, the A decoder has 2 input, 8 hidden and 14 output
units. These building blocks are then used to create A and
B autoencoders, and A and B backtranslators, as shown in
Figure 6.

This model produces 10 outputs, four latent spaces (au-
toencoder and backtranslation latent spaces) and six messages
(autoencoded, translated, and backtranslated messages). These
outputs were used to calculate the training loss

L =
X
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where the message loss, ML, is the sum of the categorical
terms’ cross-entropy loss and value terms’ mean square error.
In addition, we introduce an optional regularization term in
the loss function that is parametrized by �. This term is
motivated by the idea that the mean square error of the latent

Fig. 7. The latent representation for translation from A to B (bold arrow)
should in the ideal/lossless translation case be the same latent representation
as for backtranslation from B to A (dashed arrow).

Fig. 8. Training loss, bars show 95% CI.

representations zSauto and zSback should vanish in the ideal/lossless
backtranslation case, see Figure 7, and that this error should
be minimum for aligned autoencoders in general. Furthermore,
a validation score

V =
X

(1� cat. acc.) +
X

value MSE (4)

is used to validate the models.

C. Training Protocol
As described above, the training protocol of this translation

model need to be unsupervised because we want to enable
future work with data from realistic scenarios where it is costly
and challenging to generate data sets with translation pairs.
Inputs to the training algorithm consisted of the tuple

(mA
train,m

B
train,m

A
val,m

B
val), (5)

the training set and validation set. The training protocol used
minibatches of size 50 and the Adam optimizer with a learning
rate of 0.005. Adam was chosen after first testing SGD with
momentum, which on average converged to low accuracies on
the categorical scores.

Validation results were saved for each epoch, including the
pre-training epoch 0, whereas the training results were saved as
the average training results every 200 minibatch. The translation
score evaluated was the accuracy, where a hit is defined as
having all categorical terms correct. The continuous value was
disgarded post-hoc as the translation error for that score was
too high to be useful.

An early stopping criterion was used to choose what models
were evaluated, and was based on the validation score. Of
the 30 epochs trained, for each choice of dimensionality of
latent space dz and latent factor � the epoch which scored
the best validation score was chosen. This choice of early
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test sets of size 60000, 10000, and 10000 samples. The training
data samples were chosen randomly from the first half of the
week of simulation messages, and the validation and test sets
were taken from the later half of the week. Validation and test
samples were also chosen randomly (with no overlap between
these sets), but the same samples were taken from messages in
CPS A and CPS B. After splitting the data into smaller sets,
the value terms in each message was normalized such that the
training data had mean zero and unity standard deviation.

B. Model Architecture

The model is based on the mathematical definitions intro-
duced in [9], see Figure 5, and it includes four essential building
blocks: Encoders and decoders for messages in domain A and
B. Each of these encoder/decoder blocks consists of an input
layer, hidden layer and output layer, and the number of units
in each layer is mirrored for each encoder decoder pair. For
example, the A encoder has 14 input, 8 hidden, and 2 output
units, the A decoder has 2 input, 8 hidden and 14 output
units. These building blocks are then used to create A and
B autoencoders, and A and B backtranslators, as shown in
Figure 6.
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representations zSauto and zSback should vanish in the ideal/lossless
backtranslation case, see Figure 7, and that this error should
be minimum for aligned autoencoders in general. Furthermore,
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is used to validate the models.

C. Training Protocol
As described above, the training protocol of this translation
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the training set and validation set. The training protocol used
minibatches of size 50 and the Adam optimizer with a learning
rate of 0.005. Adam was chosen after first testing SGD with
momentum, which on average converged to low accuracies on
the categorical scores.

Validation results were saved for each epoch, including the
pre-training epoch 0, whereas the training results were saved as
the average training results every 200 minibatch. The translation
score evaluated was the accuracy, where a hit is defined as
having all categorical terms correct. The continuous value was
disgarded post-hoc as the translation error for that score was
too high to be useful.

An early stopping criterion was used to choose what models
were evaluated, and was based on the validation score. Of
the 30 epochs trained, for each choice of dimensionality of
latent space dz and latent factor � the epoch which scored
the best validation score was chosen. This choice of early
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these sets), but the same samples were taken from messages in
CPS A and CPS B. After splitting the data into smaller sets,
the value terms in each message was normalized such that the
training data had mean zero and unity standard deviation.
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backtranslation case, see Figure 7, and that this error should
be minimum for aligned autoencoders in general. Furthermore,
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is used to validate the models.

C. Training Protocol
As described above, the training protocol of this translation
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the training set and validation set. The training protocol used
minibatches of size 50 and the Adam optimizer with a learning
rate of 0.005. Adam was chosen after first testing SGD with
momentum, which on average converged to low accuracies on
the categorical scores.

Validation results were saved for each epoch, including the
pre-training epoch 0, whereas the training results were saved as
the average training results every 200 minibatch. The translation
score evaluated was the accuracy, where a hit is defined as
having all categorical terms correct. The continuous value was
disgarded post-hoc as the translation error for that score was
too high to be useful.

An early stopping criterion was used to choose what models
were evaluated, and was based on the validation score. Of
the 30 epochs trained, for each choice of dimensionality of
latent space dz and latent factor � the epoch which scored
the best validation score was chosen. This choice of early



SoS nano transactions

3) Example Use Case
As our implementation was designed to demonstrate the EN
and SC concepts, it comes with a set of files for running
an example use case.7 We here proceed to describe that
example scenario, as it gives another perspective on how our
implementation is designed to work. The example consists of
six interactions between three partners, as described below
and in Fig. 12, using the tokens in Fig. 13.

Carrier Component SupplierFinal Assembly Plant

Component Order

Transport Booking

Transport Con�rm.

Transport Paym. Req.

Component Payment Request

Manufacturing, Pick-Up & Transportation

1

2

3

4

5

6

Transport Complet.

FIGURE 12. The six steps of the example use case. Solid arrows represent
sent proposals, while dotted arrows represent sent proposal acceptances.

The goal of the following interactions is to have certain
components manufactured and delivered from a Supplier (S),
via a Carrier (C), to a Final Assembly Plant (A).

1) Component order. A sends a proposal to S, wanting a
component order of 200 units, which are to be delivered
at a certain date. In return, A offers a tentative payment
of 100 000 SEK per component.

2) Transport booking. S sends a proposal to C, wanting a
transport booking for the components and the delivery
time requested in (1). In return, S offers a tentative
payment of 7 800 SEK per transported component.

3) Transport confirmation. C sends a proposal to A, in
which C requests that A confirms the transportation in
(2). When accepted by A, C proceeds to also accept the
proposal in (2), and S then accepts the proposal in (1).

4) Transport Completion. C sends another proposal to A,
wanting A to confirm that the transportation accepted in
(3) has been completed, which is then accepted by A.

5) Transport Payment Request. C then sends the exchange
finalized in (4) together with a proposal of payment to
C, in which C refers to the transport completion in (4)
and the tentative payment in (2). S accepts.

6) Component Payment Request. S, which now knows that
the transport has been completed, sends a proposal of
payment to A, which refers to the transport completion
in (4) and the tentative payment in (1). A accepts.

7 See Footnote 4 on page 6 for a link to the source code repository, which
also contains detailed instructions for running the demo.

FIGURE 13. Informal definitions of the token types used to facilitate the
example use case, with technical descriptions on the left and legal implications
on the right. Two of the tokens exist in two type variants each, useful only to
allow our implementation determine how to automatically populate certain
data fields. Compare with the Token type definition in Fig. 3.

While the scenario illustrates how ordering, transport and
payments could be handled in an industrial scenario, there are
a few things we want to note.

• No actual payments were issued or executed by the EN
used by the three parties, even if several interactions
related to money. The purpose of the EN architecture is
to facilitate digital changes to the rights and obligations
between partners. It does not move any concrete assets
in and of itself, even if events in an EN could trigger
other systems to perform such functions. On the other
hand, the signed exchanges resulting from the example
interactions should be useful as evidence in a court of
law, in the case of any party not meeting its obligations,
such as by refusing to pay.

• The EN architecture only relays data that is directly
related to the rights and obligations of contractual part-
ners. If other information would be of relevance, such as
tracker coordinates or digital twins, that would have to
be sent via some other system.

• The example most likely contains too few steps to be
practical in a real-world setting. Pick-up, quality checks
or other significant interactions could likely be of benefit
to also negotiate about. The purpose, however, of the
example use case is demonstrate how the technology
works and how it could be used, not necessarily how
it should be used.

VOLUME X, 2019 9
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1) Negotiation Service
The Negotiation Service (NS) allows the members of an EN
to propose, accept and reject exchanges of tokens. It relays
proposals between pairs of negotiating parties, which take
turn in trying to formulate a proposal both deem acceptable.
If such an acceptable proposal can be identified by those
parties, the NS submits it to the Exchange Ledger (EL) com-
ponent, which makes sure it can be proven to have taken place
to any third parties relevance, such as courts of law, insurance
agencies, lenders, partners, and so on. A negotiation is a
procedure of three phases, (1) qualification, (2) acceptance
and (3) finalization, depicted as a state machine in Fig. 2.

ACCEPTED
REJECTED
OR ERROR

«state»
Quali�cation

QUALIFIED

Firstly, the parties take turn 
in trying to formulate a 
quali�ed proposal.

UNQUALIFIED
OR ERROR

«state»
Acceptance

«state»
Finalization

FINALIZED
ERROR

The party �rst at creating 
such a proposal sends it to 
the  counter-party, which 
may accept or reject it.

If accepted, the proposal is 
sent to the Exchange Ledger.

FIGURE 2. A naive state machine, illustrating how two negotiating parties
could progress from an initial proposal to an accepted and finalized such. A
negotiation can be terminated at any time by either of its participants.

1) Qualification. The first objective of a negotiation is to
find a qualified proposal believed to be acceptable to
each party. A qualified proposal is such that leaves no
room for ambiguity regarding who would have what
rights and obligations if the proposal would be accepted.
The proposal is searched for by having the negotiating
members take turn in trying to formulate it. If not
enough information is had for a candidate proposal to
be qualified, an unqualified such may be used instead.
Unqualified proposals may refer to abstract types of
tokens, include choices, or identify undesired tokens.
To facilitate the communication required to send these
proposals, the Proposal message in Fig. 3 is provided.

2) Acceptance. As soon as one party formulates a qualified
proposal, the objective becomes to determine if the
counter-party deems it acceptable. After having sent
the qualified proposal, the counter-party either rejects
it by sending a new counter-proposal, or accepts it
using the Acceptance message in Fig. 3. If rejected, the
negotiation returns to the Qualification phase.

3) Finalization. When a qualified proposal has been both
formulated and accepted, it is submitted by the NS to the
EL. The parties are notified when it is known whether
that submission succeeded or failed, after which the
negotiation returns to the Qualification phase. If there
is more to negotiate about, negotiation continues. In
any other case, the parties are free to terminate the
negotiation session.

FIGURE 3. The Proposal and Acceptance messages, with associated data
types. ID represents an arbitrary identifier type, question marks (?) are used
for optional values, while brackets ([]) are used to denote array types. The
types and fields are a minimally viable set of such, not all that would be useful.

2) User Registry
The User Registry (UR) is responsible for associating the
the internal identity of each EN member with its external
identities. An internal identity is an identifier used to refer
to an EN member within the system, such as in proposals,
acceptances or exchanges. External identities, on the other
hand, is what allows members to recognize other members
outside the bounds of the EN. In whatever manner a given
UR component is implemented, be it a database of x.509
certificates integrating with some public-key infrastructure
[21] or something completely different, it must be able to
guarantee that the identities of all members are trustworthy.

3) Exchange Ledger
The EL conceptually maintains an append-only ledger of
Exchange records, each of which consist of an Acceptance,
as depicted in Fig. 3, and any other data of relevance. As a
consequence, the EL can be used by EN members to (1) de-
termine if proposed or already finalized ownership exchanges
are sound, and (2) prove that past ownership exchanges
have taken place. Soundness can be determined by ensuring
the tokens of a proposal adhere to their tests, which may
include taking historic exchanges of relevance into account.
Soundness is described further in Section IV-A4. The EN
architecture makes no assumptions about how past ownership
exchanges are proven to have taken place, as long as they
can be. However, we consider one concrete way such proofs
can be facilitated when we consider our implementation in
Section IV-B.

VOLUME X, 2019 5
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• Automated SoS Engineering



How to manage and supervise  
emerging and evolving SoS

• Rule base? 
• Impossible to foresee all emerging and 

evolving scenarios!! 
• Very large scale SOS behaviour??!!



How to manage and supervise  
emerging and evolving SoS

• Policies base e.g. 
• SoS shall be stable, at all level 

• Need to detect local and prevent unstable 
behaviour 

• Monitor escalation 
• SoS shall be safe, at all levels 

• Monitoring of security 
• Management of security policies 

• SoS to be agnostic of policy changes!!



Conclusions

• IoT: Policy-driven functional evolution, self-
engineering and autonomous protocol and 
semantics translation.  

• SoS: Run-time dynamics, segmentation, 
scalability, self-mitigation, self-engineering, 
policy-driven management, M2M business 
models, M2M nano-payment.  

• SOS Engineering: evolutionary and automated 
engineering, multidimensional policy engineering 
and management strategies and policies



Conclusions

• Policy and strategy driven IoT’s and SoS’s is an 
open field



Thanks for listening

jerker.delsing@ltu.se


