
Evolutionary Architecture and Engineering Concepts
for Very Large-scale Sensor-based Solutions

(Invited Paper)

Jerker Delsing
Lulea University of Technology

EISLAB
97187 Lulea, Sweden

Email: jerker.delsing@ltu.se

Abstract—The design and engineering of solutions based on
sensor data is currently based on legacy low-level sensor com-
munication. The transition to IoT-based sensors has started
to provide IP-based sensor communication based on service
concepts. This requires radically different solution architectures
and the associated engineering process. Here, IoT sensors will
provide services instead of a communication interface, as a means
of integrating into application solutions. It is further anticipated
that the size of the solution will reach well beyond that of the
current legacy automation implementations.

This paper addresses architectural concepts for very large-
scale SoS- and IoT-based solutions. Architecture concepts and
their associated engineering concepts are considered. IoT and
SoS evolvability, run-time dynamics, scalability and segmenta-
tion, run-time engineering, self-engineering, self-mitigation, and
machine-to-machine business are some examples of such con-
cepts. These concepts must be coupled with the requirements such
as the management of IoT/SoS solution functionality, security,
safety, maintenance, and evolution.

I. INTRODUCTION

The design and engineering of solutions based on sensor
data is currently based on legacy low-level sensor communica-
tion. The transition to IoT-based sensors has started to provide
IP-based sensor communication based on service concepts.
This imposes radically changing solution architectures and the
associated engineering process. Here, IoT sensors will provide
services instead of a communication interface as a means of
integrating into application solutions.

The change to a service-based integration approach imposes
changes to both the architecture and the engineering process.
The move to services indicates an architecture change away
from dedicated middleware toward IoT sensor configuration
and SoS orchestration and management [1], [2].

The shift from legacy automation technology to Industry
4.0 and IoT- and SoS-based automation and digitalization
large-scale solutions has been discussed for the last decade.
New architectures beyond ISA-95 [3] have been proposed
for production automation. The most widespread examples
are RAMI4.0 and IIRA [4], [5]. The implementation of
such architectures using SOA technology was pioneered by
Jammes, Colombo and Karnouskos [6], [7], [8], [9]. Some
recent interesting papers on SoS architectures are [10], [11]
The engineering of such architectures using IoT-, SoS- and

SOA-based technologies is still in early stages [12]. A recent
interesting paper on

Architectures for very large-scale smart energy grids are
being proposed [13], [14]. These architectures are clearly
specific to the power distribution industry and are mostly
focused on the communication infrastructure.

Interestingly, a thorough integration of the concepts, prin-
ciples and properties from large-scale production automation
using a very large-scale approach from the smart grid networks
has not been addressed to any larger extent.

This paper addresses very large SoS/IoT-based solutions,
their architecture concepts and the associated engineering
procedures.

II. CONCEPTUAL APPROACH

Conceptually, any sensor applications can be characterized
as an interaction between the data providers and data con-
sumers. In this case, the consumers perform some type of
control/actuation based on the sensor data. An example of this
is found in automotive wheel pressure sensors, where the data
trigger an alarm to the driver. An emergent sensor application
field is the integration of very large numbers (105 − 1010) of
simple sensor applications into large-scale distributed automa-
tion/digitalization solutions. A logistics system for emptying
public and private trash and recycling cans and containers
in a large city is one example of such applications. Such a
system will enable improved emptying strategies such as on-
demand instead of on-schedule. Trash/recycling can/container
fill data will further provide an understanding of the actual
trash/recycling can/container needs, thus enabling the dy-
namic re-positioning of trash/recycling cans/containers based
on actual usage. To provide overall efficiency for such large-
scale applications, functionalities such as self-reporting, self-
mitigation, self-engineering, M2M business will be important.

This type of scenario can easily be applied to many appli-
cations. Each of these has its specific possible new business
and operational scenarios providing benefits such as reduced
operational costs, reduced environmental footprints, and au-
tonomous functional evolution.

The above application scenarios can to some extent be
readily realized using legacy sensor application engineering
approaches. The largest legacy-based automation installation

ever built contains approximately 100.000 I/O points [15]. The
high engineering costs are most likely one of the main reasons
for this boundary.

The shift to the IoT-based sensor applications anticipates
that the Internet scale of billions of connected IoTs and
integrated into a system of systems, SoS, can be reachable.
This scale of IoT interaction can further be expected to create
new machine to machine (M2M), business models and M2M
transaction technologies that currently are not manageable
using traditional banking approaches. It is also further obvious
that such a development will require that security and safety
are fundamental parts of the SoS architectures and their
implementation platforms.

Further comparison of the costs of the legacy engineer-
ing approaches and the IoT/SoS service-based integration
approaches provides data that show significantly reduced
engineering costs for the IoT/SoS service approach. Cost
reductions on the order of 60-85% have been reported [16].

A. Very large-scale IoT and SoS characteristics

The application scenarios discussed above have IoT and SoS
characteristics such as the following: a) Highly distributed
solutions b) Very large-scale SoS, 105 − 1010 IoTs c) IoT
error and maintenance reporting and mitigation d) SoS run-
time dynamics e) SoS functionality evolution f) SoS scalability
g) SoS segmentation for the protection of real-time opera-
tions, security, safety, ... h) SoS self-mitigation i) SoS self-
engineering j) SoS self-management k) Machine to machine
business models l) Machine to machine transactions - nano
payments m) Multistakeholder autonomous integration and
operations n) Management strategies and policies of SoS
properties such as, e.g., 1) Operations 2) Functional evolution
3) Functional degradation and maintenance 4) Functional
engineering 5) Security 6) Safety 7) Quality of service

For most very large-scale applications and their usage
scenarios, it appears almost impossible to address and provide
comprehensive and high-quality engineering solutions at de-
sign time. Thus, it becomes evident that we need architecture
and engineering procedures that are feasible, efficient and
economically viable at run time. Thus, the unforeseen and
emergent behavior of SoS can be addressed at run time.

The current automation engineering standards such as IEC
81346 [17] are design-time-based and do not have a run-time
engineering perspective.

Given the IoT/SoS characteristics described above, it is here
argued that it is evident that very large-scale SoS will need to
have an evolutionary behavior. This must be considered in the
emerging IoT/SoS architectures and engineering approaches.

III. ARCHITECTURE CONCEPTS FOR VERY LARGE-SCALE
SOS

As argued above, the anticipation of very large-scale SoS
calls for new and additional architectural concept for engineer-
ing, management, maintenance, business models, transactions
and cyber physical interaction. Below, we present a discussion
on several of such new architectural components.

A. Distribution and run-time dynamics

One such architecture concepts is support for IoT and SoS
run-time dynamics. In this case, the three L-properties of the
service-oriented architecture provide the necessary support:

A) Lookup 1) Publish and register services to notify others
about endpoints (how to reach me) 2) Discover others that I
comply with (expected/wanted ServiceType)

B) Late binding 1) Possible to use information at any time
by connecting to the correct resource at a given time

C) Loose coupling 1) Autonomy - a service exchange is not
supervised 2) Distributed - services are distributed over several
devices 3) A system is responsible, owns the information, and
can decide with who to share it

These fundamental mechanisms enable the run-time discov-
ery of any changes to the IoTs of an SOA-based SoS. It
further provides the run-time binding information on which
IoT consumes which produced IoT service. Both properties
are essential in addressing run-time engineering and SoS
evolution. The autonomy property also provides fundamental
support for segmentation and scalability. In recent years, we
have found several SOA-based automation frameworks, e.g.,
the Arrowhead Framework, Eclipse BaSyx, IDS, and FiWare,
that provide support for run-time dynamics in distributed
environments [18], [19], [20], [21]

B. SoS Segmentation and scaleability

The segmentation of SoS is important for creating protection
sensitive parts of an SoS operation such as critical real-
time operations or safety critical operations. The concept of
self-contained local clouds as introduced by the Arrowhead
Framework appears to be one of the very few proposed to
date to support such an architecture concept [2]. Arrowhead
Framework local clouds provides support for internal run-time
orchestration management, and authentication, authorization
and audit (AAA) security and deployment security [22], [23].

SoS scalability must be addressed in the discussion of very
large-scale solutions. The use of self-contained local clouds
as SoS building blocks appears to be an attractive approach.
The local cloud concept enables the 3L mechanisms to also
be used in between local clouds. This also includes the AAA
security mechanisms. This allows for the interaction between
the local clouds at the expense of no real-time performance
[24].

Scalability achieved in this manner clearly adds complexity
to SoS management. Therefore, multidimensional manage-
ment with time-dependent interdependencies must be consid-
ered.

C. Run-time engineering

To avoid the need for extensive re-testing of large SoS
functionalities for security, safety and other issues, run-time
engineering should be able to be executed in isolation from the
other parts of the SoS. Thus, it must be possible to modify, test
and deploy a component of an SoS without any engineering
updates to the other parts of the full SoS. This indicates
that centralization of any part of the architecture should be

avoided as much as possible. The local cloud approach of the
Arrowhead Framework (see above) provides a clearly defined
segmentation of SoS that may be beneficial here.

Engineering strategies for such segmentation will require
the consideration of multiple management dimensions that will
have dimensional dependencies that can also vary over time.
Example of such dimensions and their dependencies are the
following: 1) Operation functionality: f(system degradation,
quality of service, supply chain optimization, ...) 2) Main-
tenance: f(system degradation, supply chain optimization,
stakeholder policies,) 3) Quality of service: 4) System
degradation: f(quality of service, supply chain optimization,
operations, ...) 5) Supply chain optimization: f(operations,
maintenance, quality of service, ...) 6) Security: f(safety, stake-
holder policies, ...) 7) Safety: f(security, stakeholder policies,
legal aspects, ...) 8) Stakeholder policies: f(business models,
legal aspect, ...) 9) International and national policies It is
clear that proper segmentation in such a multidimensional
and dynamic environment will require numerous design and
engineering considerations. The possibilities for dynamic re-
segmentation in run time also must be considered.

D. Run-time management

From the above, it is further clear that the engineering
process must create management policies, related strategies
and associated information structures supporting the complex-
ity of very large sensor-based automation and digitalization
solutions. To a large extent, fundamental theory and model
for such multidimensional systems with time-varying interde-
pendencies are currently lacking.

E. Technology evolution

For the evolution of SoS and the individual IoTs, several
aspects must be considered: A) IoT technology updates, e.g.,
1) New SOA protocols - autonomous translation 2) New
encodings, semantics, ontologers - autonomous translation
B) IoT functionality updates, e.g., Updates of produced service
- autonomous update of service consumers

C) SoS management: updates to orchestration, workflow,
security, etc. based on higher-level policies, strategies, product
policies, business models, deals, etc. D) IoT configuration:
updates of IoT configuration based on updated IoT firmware
and produced services

Here, an appropriate SoS architecture must provide support
for the introduction of new or updated IoT properties regard-
ing updated or new 1) SOA protocols 2) Payload encoding
and compression 3) Payload semantics (ontologies) So-called
service buses are a common architectural component for
addressing the need for such translation support [25]. However,
the service bus is a centralized approach that requires all
communication to pass through the service bus. A distributed
and dynamic mechanisms for autonomous translations of
protocols, encodings and semantics can be found in [26].
The autonomous translation of semantics is a very complex
process and will most likely be solved using distributed AI/ML
technologies [27].

F. SoS self-engineering

The updates of produced IoT service may require updates
to the consuming IoTs. Architectures should have components
that provide mechanisms for autonomous updates of service
consumers such that the updates produced service can be
utilized. Early work on autonomous updates of IoT consumer
code can be found in [28].

G. SoS self-mitigation

The operation of very large-scale SoS will clearly exhibit
operational failures due to various types of malfunctions
and mismanagement. Thus, mitigation mechanisms will be
necessary architectural components. Approaches for such miti-
gation mechanisms were developed already in the early 2000s
by IBM [29]. Various concepts for addressing mitigation of
deviations from the desired SoS functionality and properties
are currently being developed in several large EU projects.
Some of the functionalities and properties addressed in these
projects are re-orchestration due to component failure or
supply chain re-optimization, SoS security [30] SoS standard
compliancy[31], and SoS safety [32].

H. SoS M2M business models and nano-payments

The provision of business models and mechanisms to the
very large-scale SoS discussed here appears inevitable. This
will require means of creating trusted logs of actions and
connecting such data to nano-payments between the machines.
Early concepts and implementations of such approaches can
be found in [33], [34].

IV. CONCLUSION

It is argued here that for very large automation and dig-
italization solutions, the current architecture and automation
and digitalization engineering strategies are not sufficient. It
is clear that several new architectural concepts/components
are needed. These include the following: A) IoT: Policy-
driven functional evolution, self-engineering and autonomous
protocol and semantics translation. B) SoS: Run-time dynam-
ics, segmentation, scalability, self-mitigation, self-engineering,
policy-driven management, M2M business models, M2M
nano-payment. C) Engineering support: evolution engineering,
segmentation engineering, multidimensional SoS policy engi-
neering and management strategies and policies

Such architectural and engineering component and concepts
should to a very large extent be autonomous and automatically
engineered through the implementation platforms and the
involved machines.

ACKNOWLEDGMENT

The author would acknowledge the financial support from
ECSEL-JU project Productive4.0 GAP-737459 and Arrow-
head Tools GA 826452.

REFERENCES

[1] J. Delsing, “Local cloud internet of things automation: Technology and
business model features of distributed internet of things automation
solutions,” IEEE Industrial Electronics Magazine, vol. 11, no. 4, pp.
8–21, Dec 2017.

[2] J. Delsing, J. Eliasson, J. van Deventer, H. Derhamy, and P. Varga,
“Enabling IoT automation using local clouds,” in Proceedings World
Forum - IoT 2016. IEEE, Dec. 2016.

[3] ISA95, Enterprise-Control System Integration, ISA Std.
[4] P. Adolphs and et.al, “Status report: RAMI4.0,” VDI/VDE-Gesellshact

Mess- und Automatisierungstechnik, Tech. Rep., June 2015.
[5] S.-W. Lin, M. Crawford, and S. Mellor, “The industrial internet of things

volume g1: Reference architecture,” Industrial Internet Consortium,
http : //www.iiconsortium.org/IICPUBG1V 1.802017 − 01 −
31.pdf , Tech. Rep., 2016.

[6] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” Industrial Informatics, IEEE Transactions on, vol. 1, no. 1,
pp. 62–70, Feb 2005.

[7] A. W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,
R. Harrison, F. Jammes, and J. L. Lastra, “Industrial cloud-based cyber-
physical systems,” The IMC-AESOP Approach, 2014.

[8] S. Karnouskos and A. W. Colombo, “Architecting the next generation of
service-based SCADA/DCS system of systems,” in Proceedings IECON
2011, Melbourne, Nov. 2011, p. 6.

[9] S. Karnouskos, A. W. Colombo, F. Jammes, J. Delsing, and T. Bange-
mann, “Towards an architecture for service-oriented process monitoring
and control,” in IECON 2010-36th Annual Conference on IEEE Indus-
trial Electronics Society. IEEE, 2010, pp. 1385–1391.

[10] L. Garcés, F. Oquendo, and E. Y. Nakagawa, “Software mediators
as first-class entities of systems-of-systems software architectures,”
Journal of the Brazilian Computer Society, vol. 25, no. 1, p. 8, Aug
2019. [Online]. Available: https://doi.org/10.1186/s13173-019-0089-3

[11] C. E. d. B. Paes, V. V. G. Neto, T. Moreira, and E. Y. Nakagawa,
“Conceptualization of a system-of-systems in the defense domain: An
experience report in the brazilian scenario,” IEEE Systems Journal,
vol. 13, no. 3, pp. 2098–2107, Sep. 2019.

[12] O. Carlsson, “Engineering of iot automation systems,” Ph.D. disserta-
tion, Lulea University of Technology, Lulea, Sweden, 2017.

[13] N. S. Nafi, K. Ahmed, M. A. Gregory, and M. Datta,
“A survey of smart grid architectures, applications, benefits
and standardization,” Journal of Network and Computer
Applications, vol. 76, pp. 23 – 36, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804516302314

[14] M. Hashmi, S. Hänninen, and K. Mäki, “Survey of smart grid concepts,
architectures, and technological demonstrations worldwide,” in 2011
IEEE PES conference on innovative smart grid technologies, Latin
Americe (ISGT LA), Oct 2011, pp. 1–7.

[15] J. Delsing, “Private communication with global autmation companies
like ABB, Siemens, Schneider, Valmet, Honeywell.”

[16] J. Lindström, A. Hermanson, F. Blomstedt, and P. Kyösti, “A multi-
usable cloud service platform: a case study on improved development
pace and efficiency,” Applied Science, vol. 8, no. 2, 2018. [Online].
Available: http://www.mdpi.com/2076-3417/8/2/316

[17] (2019) IEC 81346:2019 industrial systems, installations and equipment
and industrial products - structuring principles and reference designa-
tions. [Online]. Available: https://www.iso.org/standard/75265.html

[18] J. Delsing, Ed., IoT Automation - Arrowhead Framework. CRC Press,
Feb. 2017, no. ISBN 9781498756754.

[19] Eclipse basyx. [Online]. Available: https://www.eclipse.org/basyx/
[20] B. Otto and at.al., “Reference architecture model for the industrial

data space,” Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V., Tech. Rep., 2017.

[21] Wikipedia, “FiWare — wikipedia, the free encyclopedia,”
2016, [Online; accessed 21-April-2016]. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=FIWARE&oldid=711836994

[22] K. K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing, and
R. J. DeLong, “An AAA solution for securing industrial IoT devices
using next generation access control,” in 2018 IEEE Industrial Cyber-
Physical Systems (ICPS), May 2018, pp. 737–742.

[23] A. Bicaku, S. Maksuti, C. Hegedus, M. Tauber, J. Delsing, and
J. Eliasson, “Interacting with the arrowhead local cloud: On-boarding
procedure,” in Proc. IEEE ICPS 2018, 2018.

[24] C. Hegedus, P. Varga, and A. Frankó, “Secure and trusted inter-cloud
communications in the arrowhead framework,” in 2018 IEEE Industrial
Cyber-Physical Systems (ICPS), May 2018, pp. 755–760.

[25] M. . Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The enterprise
service bus: Making service-oriented architecture real,” IBM Systems
Journal, vol. 44, no. 4, pp. 781–797, 2005.

[26] H. Derhamy, J. Eliasson, and J. Delsing, “Iot interoperability - on-
demand and low latency transparent multi-protocol translator,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[27] J. Nilsson, F. Sandin, and J. Delsing, “Interoperability and machine-to-
machine translation model with mappings to machine learning tasks,”
in arXiv preprint arXiv, vol. 1903.10735, 2019.

[28] C. Paniagua and J. Delsing, “Interoperability mismatch challenges in
heterogeneous soa-based systems,” in Proceeding INDIN 2019, 2019.

[29] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[30] S. Maksuti, M. Tauber, and J. Delsing, “Generic autonomic management
as a service in a soa-based framework for industry 4.0,” in Proc. IECON
2019, 2019.

[31] A. Bicaku, M. Tauber, and J. Delsing, “Standard compliance and con-
tinuous verification in cyber physical systems,” IEEE Communications
Surveys & Tutorials, vol. Submitted to, 2019.

[32] M. I. Rezabal, L. Etxeberria, X. Elkorobarrutia, J. M. Perez, F. Larrinaga,
and G. Sagardui, “MDE based iot service to enhance the safety of
controllers at runtime,” in Proc. STAF-2019 MDE@DeRun, 2019.

[33] E. Palm, O. Schelen, U. Bodin, and R. Hedman, “The exchange network:
An architecture for the negotiation of non-repudiable token exchanges,”
in Proc. INDIN 2019, Helsinki, 2019.

[34] E. Palm, O. Schelen, and U. Bodin, “Approaching non-disruptive dis-
tributed ledger technologies,” IEEE Access, Submitted for publication
2019.

