

 Document title: Definitions for the Arrowhead Tools design principles

 Version Status Date
 2.1 final 2020-12-03

 Author Contact
 Marek Tatara, Federico Montori marek.tatara@dac.digital,

federico.montori2@unibo.it

Page 1 (9)

ECSEL EU project 826452 - Arrowhead Tools
Project Coordinator: Professor Jerker Delsing | Luleå University of Technology

Definitions for the Arrowhead Tools design
principles

Authored by Marek Tatara, Federico Montori and Géza Kulcsar. Definitions were
contributed and agreed by the following partners:

AITIA: Svetlin Tanyi
 szvetlin@aitia.ai
BnearIT: Hans Forsberg
 Hans.Forsberg@bnearit.se
BME: Pal Varga
 pvarga@tmit.bme.hu
DAC: Mateusz Bonecki
 Mateusz.bonecki@dac.digital
 Anna Kwaśnik
 anna.kwasnik@dac.digital
 Krzysztof Radecki
 krzysztof.radecki@dac.digital
 Marek Tatara
 marek.tatara@dac.digital
EUROTECH: Paolo Azzoni
 paolo.azzoni@eurotech.com
IUNET: Federico Montori
 federico.montori2@unibo.it
IQL: Géza Kulcsár
 geza.kulcsar@incquerylabs.com
LTU: Ulf Bodin
 ulf.bodin@ltu.se
 Cristina Paniagua
 cristina.paniagua@ltu.se
POLITO: Gianvito Urgese
 gianvito.urgese@polito.it

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 2 (9)

Abstract

This document contains the most essential definitions for the Arrowhead Tools design
principles. The definitions of a tool, a toolchain and an engineering process unit are provided.

Table of contents
1. Initial definitions 3

1.1 Tools 3
1.2 Toolchains 5

2. Tools and Engineering Process Mapping 5

3. List of abbreviations 8

4. Revision history 8

4.1 Contributing and reviewing partners 8
4.2 Amendments 9
4.3 Quality assurance 9

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 3 (9)

1. Initial definitions

This document contains a concise summary of the initial definitions for the Arrowhead Tools
design principles, which address Arrowhead tools, toolchains, and their relation to the
engineering process. Those design principles involve formal definitions as well as informal
guidelines. The Arrowhead Tools reference architecture abstractly realizes these principles
and it is supported by example tools and toolchain implementations. The definition has been
expanded significantly from D4.1 with an exhaustive explanation that has been necessary to
define tools in contexts that are different in scope.

1.1 Tools

In the Arrowhead ecosystem, there are functional systems that contribute to the main target of
SoS and are always a part of a local cloud, and there are non-functional systems which support
reaching this target and are not necessarily a part of any local cloud, these are commonly
referred to as Tools. But what is a tool in this context? The key observation here is that an
Arrowhead Tool is not necessarily something technically attached to actual deployments of the
Arrowhead Framework. In contrast, in the context of a digital revolution and after decades of
advancements in industrial computing, we can be sure that an Arrowhead Tool is or has a
piece of software. It is instructive to quote the officially accepted definition of an Arrowhead
Tool as proposed by the present authors, reflecting and elaborating on the above observations.
Afterward, we summarize the key points and provide some examples. It is important to stress
that henceforth we will use the word ``tool'' to identify ``Arrowhead Tools'' just as they are
defined below, not by its English dictionary definition.

A tool is a software or a hardware (with adequate software on-board) entity/artifact that
supports CP SoS and SoS engineering activities. The phases of the engineering
process in principle can be managed without tools (i.e., with a strong human
component), but probably will use some.

1. It could be a design-time or a run-time tool, depending on its place within the
process.

2. It can be service provider, consumer, both or none; in short, it is compliant with
the Eclipse Arrowhead (the first three cases) or not. We stress that it is not
necessary for a tool to support Arrowhead by design (natively) to implement any
services in the strict Eclipse Arrowhead sense; such a tool, which already exists
and should be adapted to work with Arrowhead, is called Arrowhead-enabled. In
contrast, a Framework-compliant tool (with embedded compliancy) is called an
Arrowhead Native Tool.

3. The output of a tool should be processable by other tools adopted in the other
phases of the engineering process.

4. The output of a tool should be processable by other toolchains.
5. A tool is an atomic part of a toolchain, and cannot be broken down into subtools

that can work autonomously.

As the line between a tool and an application system, and also between tools and non-tools,
might be unclear in some cases, we proceed with a number of examples in different categories.

Non-Tools
Let us first imagine an industrial scenario in which an automated machine prints silicon boards.
We could say that silicon boards could be also hand-made with a significantly increased effort
and, therefore, the machine is a tool that aids production. In fact, such a machine supports the

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 4 (9)

Operation & Management engineering phase; however, it seems so indispensable that we
consider it as a baseline; theoretically, manual work is imaginable, but in an industry scenario
not anymore.
A similar consideration applies for, e.g., compilers, which could be seen as tools because they
translate human-readable code into machine-readable code. However, using a compiler for
software engineering is obviously a baseline now. Summarizing, a tool is not only a
replacement for manual work in an industrial engineering process, but it also improves an
already established industrial baseline (for now, our judgment of baselines is based on
common sense and does not elaborate further on a proper definition).

General-purpose industrial tools.
Here, we extend the examples above to become actual tools in our conceptual framework.
Frist, getting back to the silicon board printer, we could imagine to plug it into a software system
that is able to determine, based on historical sales data, what is the optimal amount of boards
to produce every day without wasting resources, how much time the machine should be up
and running in order to achieve this number and, based on the curve of the daily price of
electricity, when it is optimal to turn it on in order to have the expenses reduced. Now, this
software system significantly improves the industrial baseline by cutting its costs without
altering its main purpose; therefore it is a tool, specifically devoted to the Operation &
Management phase.
For a software-oriented example, let us revisit compilers: Integrated Development
Environments (IDE) used for programming usually have an integrated pre-compiler that
suggests potential bugs at design time: those are tools that help speeding up the Procurement
& Engineering phase of producing a software artifact.

Multi-purpose (abstract) Arrowhead tools.
To illustrate the above tool concept in its originating Arrowhead context, we first provide some
common examples of tools encompassing multiple EPPs, planned to be fully implemented in
the future, mature state of the Arrowhead Tools platform. The list is far from being exhaustive
but aims at showcasing the diverse scope range of thinkable Arrowhead Tools from early
software validation to actual production.

● Test Tool A general software solution to test basic validity requirements for any
Arrowhead local cloud before its deployment; e.g., every local cloud should have a
running Service Registry, systems which are known to be communicating from the
beginning should have data interfaces with compatible encodings, etc. This belongs to
Procurement & Engineering as well as Deployment & Commissioning phases.

● Deployment Tool Software running on a central computer, overseeing the
deployment procedure of an Arrowhead SoS design, i.e. installing software systems to
their dedicated hardware and establishing communication (Deployment \&
Commissioning phase).

● Local Cloud On-boarding Tool A piece of software that can be executed on a
device with basic wireless and Arrowhead capacities. It can be used for detecting local
clouds in the environment that the device is entitled to join, and possibly even manage
basic negotiations.

● Component Presence Detector A tool that takes as input camera stream, and
produces a binary output denoting whether a physical component (e.g., a piece to
assembly) is present at the desired position with the correct orientation. This is an
example of the Operation & Management tool (that could be either Arrowhead-enabled
or not, depending on its implementation).

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 5 (9)

● Arrowhead-enabled Reconfigurable Sensor Data Provider This is a run-time tool
consisting of a hardware component (an STMicroelectronics microcontroller) with bare-
metal firmware enabling communication with the Arrowhead Framework over the HTTP
protocol, built on LWIP's RAW TCP/IP API stack, along with the implemented support
for the developed on-boarding process of new measurement nodes. This is, also being
an example of a hardware-software combination, a run-time tool, an (Arrowhead-
enabled) service provider, and cannot be subdivided into tools (as expected). The input
of the tool is the information about the interface, on which the sensed data should be
read. The output of the tool is the data measured on the configured interface. The tool
falls under Deployment & Commissioning and Operation & Management phases.

1.2 Toolchains

The characteristics of an Arrowhead tool as detailed in the previous section (interoperability
and atomicity in particular) make this notion appropriate as a basic constituent of well-founded
toolchain descriptions: (i) the requirements on tool interoperability ensure their integrability into
tool sequences and (ii) their atomicity facilitates the clarity of the resulting toolchain
architecture.

Just as we did for Arrowhead tools, let us first revisit the accepted definition of an Arrowhead
toolchain:

A toolchain is a collection of tools and of the definitions of the corresponding interfaces
potentially organized in chain-based or parallel structures. Tools in a toolchain can be
substituted/replaced with other tools with the same input/output interfaces.
2 It can be design-time, run-time or both.
3 It aims for a certain level of automation in information processing/transfer throughout the

engineering process.
4 It can allow iterative use of its parts (tools and toolchains).
5 It can cover only some (not necessarily consecutive) parts of the engineering process, or

the whole product lifecycle (typical for general infrastructural tools), even iteratively until
the end-of-life phase.

We also recall that an Engineering Process Unit (EPU) is either an Engineering Process
Phase (EPP), based on the AHT-EP (Arrowhead Tools Engineering Process) or an
Engineering Process Interface, which can be in turn either an input interface (EP-I) or an
Output interface (EP-O) between them. An Engineering Process Mapping (EPM) relates a
tool to one or more EPU it covers.

Thus, the toolchain concept proposed here naturally integrates with AHT-EP and its flexible
phase ordering principle. In turn, specifying a toolchain with an engineering process mapping
(EPM) combines this flexibility with an adequate amount of requirements to fulfill: whenever
two EPPs are attached to each other via their corresponding interfaces, we pose a requirement
on the toolchain to realize data exchange in the corresponding direction between those (or
generally, some of those) tools addressing the respective EPPs.

2. Tools and Engineering Process Mapping

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 6 (9)

The following figure shows an abstract overview of the Arrowhead Tools landscape: The upper
box represents the so-called “Bag” (i.e. loose collection) of Arrowhead Tools, where the
division into Arrowhead-enabled and Native tools is also indicated. The bottom row of blocks
with connectors is a concise representation of the engineering process (see details below the
figure). The central part, in purple, is an abstract example of what an EPM for a fictive toolchain
might be, and how this could be graphically represented.

The solid arrows between three (fictive, non-concrete) tools represent their chaining, while the
single tools are also mapped via dashed EPM arrows to the engineering process phases and
their input/outputs.

The upper part of the figure above shows an abstract representation of the overall model
resulting from the combination of AHT-EP with our toolchain concept. Circles in the upper row
represent an initially unordered collection of existing or even potential (Arrowhead) tools,
divided into Arrowhead-enabled and Arrowhead Native (i.e., Framework-capable) tools,
emphasizing that those categories are easily combined within a single toolchain. The actual
toolchain is then specified by selecting its constituting tools and defining an EPM such that the
data exchange links (i.e., the chainings) between the tools are reflected in an EPP
configuration via interfaces. Moreover, a correct toolchain specification should be
synchronized on both sides: while every contained EPP and interface has to be covered by at
least one tool, also, every tool chaining has to correspond to at least one EPP interface pairing
(i.e., an output interface connected to an input interface). The figure also hints at a noticeable
corner case: sometimes, a single tool might cover multiple EPPs and also their connecting
interface.

Thus, we have summarized the principles of a comprehensive high-level engineering workflow
model for Arrowhead Tools. In order to align it with AHT-EP, we propose the name Arrowhead
Toolchain Model, or AHT-TC for short.

While AHT-EP could formally be considered as a part of AHT-TC, we stress that their actual
usage highlights their different origins and both models, while sharing a common baseline, are
utilized with different focal points and in slightly different contexts. The usage of AHT-EP is
elaborated in detail in D2.1.

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 7 (9)

For the sake of intuitiveness and logical consequentiality, we represent graphically the EPPs
in a sequence. However, this does not force the use case designer to follow such phases in
this succession; rather, a phase could be executed iteratively, phases could be skipped and
connected to “previous” ones and so on. Note that EP-I and EP-O outline inputs and outputs
that are meant to be produced/consumed by other tools in the toolchain. A generic input or
output of the tool is therefore not necessarily represented this way.

For a better clarity, we give EPPs alternative names as follows:

● EPP1: Requirements
● EPP2: Functional Design
● EPP3: Procurement & Engineering
● EPP4: Deployment & Commissioning
● EPP5: Operation & Management
● EPP6: Maintenance, Decommissioning & Recycling
● EPP7: Evolution
● EPP8: Training & Education

Similarly, EP-I and EP-O are numbered as follows:

● EP-I1: Input for Requirements
● EP-I2: Input for Functional Design
● EP-I3: Input for Procurement & Engineering
● EP-I4: Input for Deployment & Commissioning
● EP-I5: Input for Operation & Management
● EP-I6: Input for Maintenance, Decommissioning & Recycling
● EP-I7: Input for Evolution
● EP-I8: Input for Training & Education

● EP-O1: Output of Requirements
● EP-O2: Output of Functional Design
● EP-O3: Output of Procurement & Engineering
● EP-O4: Output of Deployment & Commissioning
● EP-O5: Output of Operation & Management
● EP-O6: Output of Maintenance, Decommissioning & Recycling
● EP-O7: Output of Evolution
● EP-O8: Output of Training & Education

This means that, for instance, EP-O4 does not necessarily feed only EP-I5, but it can serve
as an input of any other phase.

To conclude, in order to clarify better, there may be different conceptual kinds of tools and
toolchain: existing tools in the toolchains that are currently used to develop the use cases,
potentially covering all the engineering phases (e.g., gcc, Eclipse IDE, Synopsys SW, CAD,
e.g, for operation Eclipse Kura, NILM algorithms, …); tools that we will develop in the project
that could be Arrowhead Framework compliant or not, because of lack of functionalities.
Furthermore, there are some artifacts produced by the toolchain in the engineering process
(typically in EPP1-4) that are not tools in such phases, but become tools in the following
phases (e.g. an IoT framework used for manage a fleet of devices, is a software produced by
EPP1-4 and in EPP1-4 it is not a tool, but in EPP5-6 it becomes a tool).

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 8 (9)

3. List of abbreviations

Abbreviation Meaning

SoS System of Systems

CP SoS Cyber-Physical System of Systems

EPU Engineering Process Unit

EPP Engineering Process Phase

EAEM Extended Automation Engineering Model

EP-I Engineering Process Input Interface

EP-O Engineering Process Output Interface

EPM Engineering Process Mapping

4. Revision history
4.1 Contributing and reviewing partners

Contributions Reviews Participants Representing partner

X X Marek Tatara DAC

X X Federico Montori IUNET

X X Géza Kulcsár IQL

 X Svetlin Tanyi AITIA

 X Hans Forsberg BnearIT

 X Pal Varga BME

 X Mateusz Bonecki DAC

 X Anna Kwaśnik DAC

 X Krzysztof Radecki DAC

 X Ulf Bodin LTU

 X Cristina Paniagua LTU

X X Paolo Azzoni Eurotech

X X Gianvito Urgese Polito

 X Partick Moder IFAG

 Document title: Initial definitions for the Arrowhead Tools design principles
Version Status Date
 2.1 final 2020-12-03

 Page 9 (9)

 X Laurentiu Barna Wapice

4.2 Amendments

No. Date Version Subject of Amendments Author

1 2019-09-24 0.1 First Draft Marek Tatara

2 2019-09-30 0.2 Interface I/O Mapping Federico Montori

3 2019-10-04 0.3 Refinement of the
definitions Marek Tatara, Paolo Azzoni

4 2019-10-16 0.4
Refinement of the
definitions, definition of the
mapping

Géza Kulcsár

5 2019-10-25 1.0 Final Version Marek Tatara, Federico Montori

6 2019-12-11 1.1 Final Version for D4.1 with
conclusions Federico Montori, Marek Tatara

7 2020-09-24 1.2
Second Draft, added all
the new content for D4.2,
to be revised

Federico Montori

8 2020-11-02 2.0 Final Version for second
year Federico Montori, Marek Tatara

9 2020-11-25 2.0 Internal Review Patrick Moder

10 2020-12-02 2.0 Internal Review Laurentiu Barna

11 2020-12-03 2.1 Addressing comments of
the internal reviewers Federico Montori, Marek Tatara

4.3 Quality assurance

No Date Version Approved by

1 2020-12-03 2.1 Jerker Delsing

