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Our	data	environmemt
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Complex	production	automation	environment
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From	enterprise	to	multi	stakeholder	operation

Stakeholder
collaboration
domain

Lifecycle  
domain

Supply chain 
domain

Shop floor

Business

Design

Support

Suppliers Customers



Multi-stakeholder	environment	
Value	networks

Data ownership  
Access to data 
Trusted logs of actions 
M2M business 
Real time monetisation 
… 
… 
…



AI and data
Most AI is today applied on one parameter data sets 

Our facilities have a large set of parameters for which data is collected 

AI have the potential to reduce complexity of multi modal data sets 
Providing meaningful understanding of our operations, production  

and products



Where are the AI data bottlenecks

Access to data? 
Legally  
Technically 

Data quality? 
Data documentation? 
Understanding of data? 

Context is necessary!! 

The multitude of data models developed 
over decades and decades to come



Access to Data from Production

Production data is currently regarded as key company assets 

Production data exists with many stakeholders in production 

Secure and efficient data sharing is key to many operations 
Protection for non agreed use of shared data is important 
No generally accepted solutions!! 

Early technology initiatives from IDS and GAIA-X



Data sources
Machines - time series of data 

The protocol and encoding problem 
The data model problem 

Context 
The asset data model problem 

Humans - operators, maintenance, engineering 
The non digital data problem  

Digitalisation and understanding of human notes 
AI based recognition and natural language capturing 
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Protocol	and	data	encoding	problem

Translation	between	different	protocols,	and	encodings	
e.g.	HTTP,	CoAP,	MQTT,	OPC-UA,	Modbus…	
e.g.	JSON,	XML,	CBOR,	….	

H. Derhamy, J. Eliasson and J. Delsing, "IoT Interoperability—On-Demand and Low Latency 
Transparent Multiprotocol Translator," in IEEE Internet of Things Journal, vol. 4, no. 5, pp. 
1754-1763, Oct. 2017.
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Machine	data	model	problem
Machine	A	message	
[	

{“n”:	“OO_temp_sensor”,	
	“t”:		318350,	
	“u”:	“K”,	
	“v”:	294.05}	

]	

Machine	B	message	
[	

{“bn”:	“temp_sensor”,	“bt”:	
318350},	
{“u”:	“Cel”,	“v”:	20.9},	
{“u”:	“Lon”,	“v”:	“1”},	
{“u”:	“Lat”,	“v”:	“-1”}	

]	

Same standard
Same ontology 
Same data
Do not look the 
same!!

Interoperable????
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Machine	data	model	standards

Sensor	data	
SenML	(RFC	8428)	developed	by	OMA	
SensorML	(OGC	standard)	

Addresses	same	type	of	data	but	
are	not	interoperable
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Asset	data	model	standards

Asset	descriptions	
ISO	15926	
ISO	10303	(AP	223)	
Asset	administration	shell	DIN	….	
“Old”	asset	standards,	non	machine	readable	
Loosely	documented	“standards”	

Addresses	same	type	of	asset	data	
but	are	not	interoperable
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Data	model	standards	and	evolution

Domain	standards	including	data	models	
Domain	does	not	necessary	talk	to	each	other	

Standard	life	times		
New	standards	are	created	
Standards	are	updated		-	5-15	years	

Technology	life	times	and	update	and	upgrade	cycles	
Asset	mechanical	lifetime	-	20-100	years	
Automation/IT	HW	lifetime	-	10	years	
Automation/IT	SW	lifetime	-	…..	months	to	a	few	years?!	

Data	model	lifetime	
Semantics/ontologies	-	5-10	years	
New	once	invented	every	hour



Data interoperability initiatives 
Production asset data interoperability initiatives  

Paper&Pulp, Oil&Gas
ISO 15926



Data	model	interoperability

Machine	learning	approach	
•Model	of	communicating	cyber-physical	systems	(CPS)	
with	different	data	representations	and	semantic	
definitions	that	interact	in	a	physical	environment	(gray)	
and	service-oriented	architecture	(white)	via	messages	m	
translated	by	a	function	TAB		

. 

CPS A
xA,GA,mA

uA, yA

CPS B
xB ,GB ,mB

uB , yB

TAB
mA m̂B

u, y

Fig. 1: Model of communicating cyber-physical systems (CPS)
with different data representations and semantic definitions
that interact in a physical environment (gray) and service-
oriented architecture (white) via messages m translated by a
function TAB .

research field of dynamic and operational interoperability in
SOA lacks a precise mathematical formulation and consensus
about the key problem(s). Therefore, we approach the transla-
tion problem by formulating it in precise mathematical terms
that can be mapped to machine learning tasks.

We define the M2M interoperability problem in terms of
translator functions, TAB , which map messages, mA, from
one domain named CPS A to messages in another domain,
mB , named CPS B, see Figure 1. The translators can be arbi-
trarily complex functions that are generated as integrated parts
of the overall SOA, thereby maintaining a modular architecture
as in the case of engineered adapters. In general, the translated
messages, m̂B , cannot be semantically and otherwise identical
to the messages communicated within CPS B, mB , but we
can optimize the translator functions to make the error small
with respect to an operational loss or utility function. In the
following, we elaborate on the latter point and introduce the
additional symbols and relationships of the model as the basis
for defining translator learning tasks, which in principle can
be addressed with machine learning methods.

The model is divided in three levels: cyber (white), physical
representation (light gray) and the shared physical environment
(gray), see Figure 1. At the cyber level, the graphs GA and GB

define all discrete symbolic and sub-symbolic metadata that is
specific for CPS A and CPS B, respectively. For example,
the nodes and edges of these graphs can represent subject,
predicate, and object semantic triples defined in the Resource
Description Framework (RDF). Each CPS also has discrete
internal states, xA and xB respectively, such as the computer
program variables of all devices in a CPS, which are not
directly readable or writeable in the SOA but may be read
and modified indirectly via the messages and services. The
environment has inputs, u, which can be affected by actuator
devices, and outputs, y, which can be measured with sensor
devices. In CPS A, the outputs of the sensor devices are
represented at the cyber level as discrete variables yA and the
actuators are controlled by discrete variables uA, and similarly
for CPS B. From the viewpoint of causality, u influences y
and thus changes of elements of uA may influence the values
of elements in both yA and yB , and vice versa.

Messages are generated by encoder functions on the form

mA ← EA(uA, yA, xA;GA), (1)

which typically are implemented in the form of computer

programs. Similarly, the internal states are updated by decoder
functions

(xA, uA)←DA(mA;xA, uA, yA;GA), (2)

which are matched to the corresponding encoder functions.
However, a decoder DB can in general not be combined with
an encoder EA, and vice versa.

Although some technical details and challenges are hidden
in this abstract model (an example of the details and chal-
lenges using a rule-based approach can be found in [13]),
the model enables us to define concepts and relationships
that otherwise are ambiguous and described differently in the
literature depending on the context. The task to model dynamic
relationships between u and y in terms of uA and yA (or uB

and yB etc) is the central problem of system identification
[14]. The task to model and control one CPS in terms of the
relationships between uA, yA, xA and sometimes also GA

is more complex [15] and typically involves hybrid models
with state-dependent dynamic descriptions. This is a central
problem in automatic control and CPS engineering.

Symbol grounding [16] refers to the relations between a
symbol defined by GA and the related discrete values of{xA, uA, yA} (similarly for GB) and the property of the
environment {u, y} that the symbol represents. A ground-
ing problem appears when a symbol defined in GA have
an underfitted relationship to the referenced property of the
environment represented via {xA, uA, yA} (similarly for GB),
such that symbols in GA and GB cannot be conclusively
compared for similarity although both systems are defined in
the same environment. Therefore, symbol grounding is just as
relevant for translator learning as it is for reliable inference in
cognitive science and artificial intelligence.

Listing 1 presents two examples of SenML messages that
are constructed to illustrate the character of a semantic trans-
lation problem, m̂B = TAB(mA). Both messages encode
information about the temperature in one office at our uni-
versity and thus represents related physical properties. A
and B can for example refer to the heating and ventilation
systems in the office, respectively, and thus the temperatures
are not necessarily identical. The message from System A
includes the service URI and the time, longitude and latitude
of the temperature measurement with unit ‘K’ for Kelvin and
numeric value 293. The message from System B includes the

Listing 1: Two semantically similar but machine-incompatible
messages. Parts with the same color describe the same concept,
property or object.
# System A message:
[ {"bn":"127.0.0.1/temp-service","bt":1549359472},

{"u":"lon","v":65.61721},
{"u":"lat","v":22.13683},
{"u":"K","v",253} ]

# System B message:
[ {"n":"office-A2312-temp-sensor",

"u":"Cel",
"v":-20.4,
"t":1549359472} ]

J. Nilsson, F. Sandin and J. Delsing, "Interoperability and machine-to-machine translation model with 
mappings to machine learning tasks," 2019 IEEE 17th International Conference on Industrial Informatics 
(INDIN), Helsinki, Finland, 2019, pp. 284-289.
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Data	semantics	translation	approach
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Nilsson, J. (2019). System of Systems Interoperability Machine Learning Model 
(Licentiate dissertation). Luleå University of Technology. Retrieved from http://urn.kb.se/
resolve?urn=urn:nbn:se:ltu:diva-76229 

Time domain data

Context data
Availability??
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Data	semantics	interoperability	-	early	results

Semantics	translation	results	

TABLE I: Tested models and their results.

Model Kind Strategy Size Accuracy Error

Max Mean Min Mean

0 non-shared 2 1-layer 0.70 0.44 0.57 4.0
1 non-shared 2 2-layer 0.73 0.38 0.50 4.9
2 non-shared 1 1-layer 0.66 0.39 0.48 6.7
3 non-shared 1 2-layer 0.74 0.34 0.71 12.0

4 shared 2 2-layer 0.70 0.34 0.54 15.0
5 shared 3 2-layer 0.75 0.41 0.43 2.7
6 shared 1 2-layer 0.69 0.33 0.53 12.0

7 supervised – 1-layer 1.0 1.0 0.16 0.17
8 supervised – 2-layer 1.0 0.99 0.16 0.19

used a cosine annealing with warm restarts schedule for the
learning rate. Each epoch, the learning rate starts at 0.005 and
drops to 0.0005 following a cosine curve. We used cosine
annealing with warm restarts to minimize the risk of getting
stuck in a local minimum, which often happened in the
unsupervised case when using a flat learning rate.

In summary, we had 9 different models (see Table I) that
were tested 30 times each with randomly initialized parameters
to evaluate the statistics of their performance.

IV. RESULTS

Figure 5 shows boxplots of the highest categorical field
translation accuracy (5a) and the lowest continuous field
translation mean square error (5b) attained during validation
for each of the 270 trained translators, organized by model.
Table I also contains summary statistics of the models. It is
clear that the unsupervised models performed much worse than
the supervised models. Such high performance of a supervised
model is expected when trained on fairly simple data. The best
performing model on average of the unsupervised models was
the non-shared model using training strategy 2, but the wide
spread in both translation accuracy and translation MSE means
we cannot definitely say that it was the best model. However,
models trained with strategy 2 have a slightly higher categor-
ical field translation accuracy and slightly lower continuous
field translation error, perhaps because fewer parameters are
being updated in each step in those models.

The large spread in best results are evidence of fragility
in training, which is one of the main reasons we tested the
shared models. However, it is evident that while the best results
are promising in terms of translation accuracy (> 70%), the
training procedure is still lacking in producing consistently
good results for both tested values. This cannot be due to
model capacity, since the unsupervised model has the same
shape as the unsupervised, the only influence must be the
training procedure. Overall, we find the best results to be
promising, but the training protocol needs to be made more
robust for translation systems like these to ever be used in
real-world scenarios.

V. DISCUSSION

While the average translation results are marginally better
than pure chance, the best results demonstrate the feasibility

(a)

(b)

Fig. 5: Boxplots of (a) highest translation accuracy for cate-
gorical fields and (b) lowest translation error for continuous
fields for all 270 models trained.

of using unsupervised learning to train translators for message
data. But the investigated training protocols are fragile and do
not produce accurate translation results. In this use case, we
can rule out model capacity as a source of error since the
supervised model translates both categorical and continuous



How	to	manage	extraction	of	data	for	
AI	from	process	automation	and	

industrial	digitalisation?
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Data	generation	in	multi	stakeholder	environment

Data	on	the	engineering	process	
Operational	data	
Business	data	
Lifecycle	data	
Stakeholder	data	
Context	data	
Asset	data	
Maintenance	data	
Evolution	data
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Engineering	process	need	to	consider	data	
capturing	in	multi	stakeholder	environment



Model	supported	engineering
Modelling	of	solutions	-	SysML	

Machine	supported	engineering	

Automated	SW	generation	

Data	extraction	supported	by	modelling	guidance	

In	the	engineering	process	

Operations	

…….	
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In	conclusion

AI	in	production	depends	on	data	availability	and	accesability	

Complex	problems	need	multimodal	data	sets	

Data	interoperability	is	fundamental	

Engineering	processes	need	to	address	data	generation		

Operational	Strategic	Data	Management
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