
By Emanuel Palm

Base Library for the Arrowhead Framework



What is it?

1. Java 11 libraries for Arrowhead system development.
2. A website, arkalix.se, with documentation and examples.
3. Maven artifacts, accessible via Maven Central.

https://arkalix.se
https://search.maven.org/search%3Fq=g:se.arkalix


What does it look like? (1/2)

var system = new ArSystem.Builder()
.identity(identity)
.trustStore(trustStore)
.build();

system.provide(new HttpService()
.name("kalix-example-service")
.encodings(JSON)
.accessPolicy(token())
.basePath("/example")

.get("/greeting", (request, response) -> {
response.status(OK)

.body("{\"text\":\"Hello, Arrowhead!\"}");
return done();

}));



What does it look like? (2/2)

var system = new ArSystem.Builder()
.identity(identity)
.trustStore(trustStore)
.plugins(HttpJsonCoreIntegrator.viaServiceRegistryAt(hostnamePort))
.build();

system.consume()
.name("temperature")
.using(HttpConsumer.factory())
.flatMap(consumer -> consumer.send(new HttpConsumerRequest()

.method(GET)

.uri("/temperatures/a-32"))
.flatMap(response -> response.bodyAsIfSuccess(TemperatureDto.class))
.ifSuccess(temperature -> System.out.println(temperature.toCelsius()))
.onFailure(Throwable::printStackTrace);



What's happening now?

1. The library is being used to implement the Contract Proxy, the 
Plant Description Engine, and, potentially, the Cloud Uploader.

2. More service integrators, bugfixes and other improvements are 
likely coming. An Event Handler integrator and a Contract Proxy
integrator are being planned.

3. Fork the repository on 
github.com/emanuelpalm/arrowhead-kalix.

https://github.com/emanuelpalm/arrowhead-kalix%E2%80%8B


Who am I?

Emanuel Palm
PhD. Student
Luleå University of Technology
emanuel.palm@ltu.se

http://ltu.se


Design philosophy

1. Correctness
Validate as much user input as possible, such as certificates and configuration 
data, and fail as soon as possible.

2. Convenience
Never require users to explicitly specify details that can be correctly derived 
from context. Prioritize abstractions that minimize cognitive overhead.

3. Performance
Optimize for short start-up time, high throughput and low latency. When 
possible, pay for performance at compile-time rather than at runtime.


