

Page 1 (8)

ECSEL EU project 826452 - Arrowhead Tools
Project Coordinator: Professor Jerker Delsing | Luleå University of Technology

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Author Contact
 Federico Montori federico.montori2@unibo.it

Best practices

IUNET: Federico Montori
 federico.montori2@unibo.it
IQL: Géza Kulcsár
 geza.kulcsar@incquerylabs.com

Abstract
This document is a collection of more user-friendly definitions as well as best practices when
defining and describing tools, being them used within a Use Case or general purpose tools.

mailto:federico.montori2@unibo.it
mailto:geza.kulcsar@incquerylabs.com

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 2 (8)

Table of contents

1. Best practices 3

1.1 Common practices 3

1.2 Identify the need for a Tool 4

1.3 Declare your Tool within the Toolchain Architecture 4

1.4 Tool declaration examples 5

2. Connection to the Arrowhead Framework 6

3. List of abbreviations 7

4. Revision history 7

4.1 Contributing and reviewing partners 7

4.2 Amendments 7

4.3 Quality assurance 8

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 3 (8)

1. Best practices

This document is a collection of more user-friendly definitions as well as best practices when
defining and describing tools, being them used within a Use Case or general purpose tools.

1.1 Common practices

Recall that the phases and the elements of the EAEM were already defined in another
document, but here a short recollection can be found. Recall that EP-O and EP-I are
respectively inputs and outputs that connect different phases, and not a generic input and
output of the tool. It is important to state that EPPs do not necessarily have to interact in
the order presented in the figure; that is only a suggested sequence of phases in a common
understanding of an engineering process and gives us a standard numbering. That being said,
recent advances imply that such a process can be iterative, skip phases or even consists of
loops.

A recall to the alternative naming:

EPPs are numbered as follows:

 EPP1: Requirements
 EPP2: Functional Design
 EPP3: Procurement & Engineering
 EPP4: Deployment & Commissioning
 EPP5: Operation & Management
 EPP6: Maintenance
 EPP7: Evolution
 EPP8: Training & Education

Similarly, EP-I and EP-CI are numbered as follows:

 EP-I1: Input for Requirements
 EP-I2: Input for Functional Design
 EP-I3: Input for Procurement & Engineering

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 4 (8)

 EP-I4: Input for Deployment & Commissioning
 EP-I5: Input for Operation & Management
 EP-I6: Input for Maintenance
 EP-I7: Input for Evolution
 EP-I8: Input for Training & Education

 EP-O1: Output of Requirements
 EP-O2: Output of Functional Design
 EP-O3: Output of Procurement & Engineering
 EP-O4: Output of Deployment & Commissioning
 EP-O5: Output of Operation & Management
 EP-O6: Output of Maintenance
 EP-O7: Output of Evolution
 EP-O8: Output of Training & Education

Regardless of the internal structure defined for your use case, for the project purposes it is
convenient that each partner applies the above Extended Automation Engineering Process
(EAEM) for their System of Systems (SoS). This will ensure a homogenization and possible
interaction between partners and SoSs. It is important to stick to such a structure even in case
your SoS does not go through all the phases. In such a situation you would declare only the
phases that concern your SoS.

1.2 Identify the need for a Tool

Given the formal definition of an Arrowhead Tool given in the WP4 O1 document
(https://atmospheres.research.ltu.se/owncloud/index.php/f/991334), one should determine
whether the developed SoS requires using one or more AH tools to achieve the intended
functionality. Indeed, most time it does. In fact, besides the application systems that are strictly
functional part of the use case, any software that helps you in the design your SoS, as well as
plays supporting role in the run-time phase, can be an AH tool. In particular, whenever there
is a performance or data processing issue, an AH tool can be introduced in the toolchain
and its presence will reduce engineering costs of the SoS. An AH tool is also needed when
there is an interoperability or communication gap, in such a case, the outcome would be
interoperability for IoT and SoS. An AH tool can also address several other needs such as the
introduction of new features to SoS.

1.3 Declare your Tool within the Toolchain Architecture

When defining an AH tool, it is important to summarize a series of defined key points, which
shall help to identify the role and function of that tool within the Arrowhead Tools Project. The
key points are explained in the following (examples regarding each phase, for a major clarity,
can be found in the next section):

a. Whether the tool is run-time or design-time: an AH Tool can be design-time or run-
time. More in detail, if the tool is used typically in phases that characterize the
preparatory stage in the engineering process of the SoS, it is a design-time tool,
whereas if the tool is used while the SoS is up and running in its steady state, it is a
run-time tool.

b. Whether the tool is connected to the AHF: the tool is AH-compliant or connected to
the AHF if it consumes the services offered by at least the three mandatory core

https://atmospheres.research.ltu.se/owncloud/index.php/f/991334

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 5 (8)

services: Service Discovery, Authorization and Authentication, and Orchestration. To
this end, a run-time tool is highly recommended to be AH-compliant as it likely
implements service interfaces that have to be used in run-time automation processes
by other components of the SoS. On the other hand, depending on their purpose and
usage, it might not be possible or convenient to make design-time tools AH-compliant
(e.g. because they require less automation, more interaction with humans or are on a
different abstraction level).

c. Which EPU is the tool involved in: when defining a tool it is strictly necessary to state
clearly and unequivocally which EPU it refers to. The quickest and most efficient way
to map a tool to EPUs is to list the relevant EPUs using the naming that we gave at the
beginning of the document.
For example: EPB3, EP-O3, EP-I4 identifies a (likely design-time) tool that is
specifically devoted to the Procurement & Engineering phase and it implements also
an interface between Procurement & Engineering and Deployment & Commissioning.
As a guideline, we can associate conceptually the first 4 EPP with the design-time and
the others with the run-time as it is a situation that is commonly applicable; this is not
a sharp division as all the combinations are technically possible.

d. The inputs of the tool: it is necessary to define the input of the tool (if any). A tool can
have several units of input; The definition must be structured as a list of units structured
in the following way: [input data], (EP-I).
In fact, each input, if it is a toolchain input, may be gathered by an EP-I, in such a case
this must be indicated (it is mandatory only if the input is part of the toolchain, i.e. if it
is obtained from another tool).

e. The outputs of the tool: it is necessary to define the output of the tool (if there is any).
A tool can have several units of output; The definition must be structured as a list of
units structured in the following way: [output data], (EP-O).
In fact, each output, if it is a toolchain output, may be gathered by an EP-O, in such
case this must be indicated (it is mandatory only if the output is part of the toolchain,
i.e. if it is delivered to another tool).

1.4 Tool declaration examples

In this section we report a series of tools that can serve as examples for declaring the tools in
the Arrowhead Tools project.

The Validation Toolchain

This abstract toolchain is a sandbox composed of three tools. The validator tool performs
several performance benchmark tests on a device given in input, provided that it has certain
functionalities (sensing and networking). Let’s assume that such devices are used in a
multitude for tasks like Structural health monitoring (where one single sensing device is not
enough). This validator tool also gives the output of the test to another tool (the deployment
tool) which, taken as input the outputs of the tests and the map of the environment, provides
the best placement of the devices in the environment in order to optimize the connection
issues. Next, we have the optimizer tool, which is a run-time tool that periodically checks the
status of the sensor network and turns them off and on in order to optimize the amount of
energy consumed. It needs the sensor status as well as the deployment information of them.
It also checks for anomalies in the sensors and sends an alarm when detected (e.g. the battery
of one of the sensors is exhausted).

1. Validator Tool

a. Design-Time Tool

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 6 (8)

b. Not connected to the AHF
c. EPP3, EP-O3, EP-I4
d. [Device Data Sheet]
e. [Performance Test Output] (EP-O3)

2. Deployment Tool
a. Design-Time Tool
b. Connected to the AHF
c. EP-O3, EP-I4, EPP4, EP-O4

The EP-O4 is not coupled with EP-I5 either because there is no other tool in this
toolchain or because the output is meant to serve whichever EPP needs it
instead of a specific one (in our case both maintenance and operation).

d. [Performance Test Output] (EP-I4)
[Environment Description]

e. [Device Deployment] (EP-O4)
3. Optimizer Tool

a. Run-Time Tool
b. Connected to the AHF
c. EPP5, EPP6, EP-I5, EP-I6

It concerns both automation and maintenance. It has no output for the toolchain
but it consumes input from the deployment.

d. [Sensor Deployment] (EP-I5, EP-I6)
[Sensor Data]

e. [Turnoff-Turnon Commands to Sensors]
[Alarm to the Human Manager]

2. Connection to the Arrowhead Framework

Arrowhead Tools, whenever possible, should be connected to the Arrowhead Framework,
which will facilitate and unify the information transition between tools belonging to
different EPUs. In particular, whenever a tool implements an input or output interface (EP-I or
EP-O), then such interface should make the tool an Arrowhead provider or an Arrowhead
consumer. Recall that the compliance with the AHF is achieved by implementing a consumer
interface against the three mandatory Core Services: Service Discovery, Authorization and
Orchestration.

In fact, we can state that a fully Arrowhead-compatible toolchain makes the Arrowhead
Framework itself the toolchain architecture, in which each toolchain becomes a set of
Orchestration rules.

In short, the Arrowhead Framework that can be adopted as:

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 7 (8)

 an integration platform to improve the tool chains automation, and consequently the
engineering process;

 an integration platform for the creation of new applications (“old” way of using the
Arrowhead Framework investigated in the previous project).

3. List of abbreviations

Abbreviation Meaning

AHF Arrowhead Framework

SoS System of Systems

CP SoS Cyber-Physical System of Systems

EPU Engineering Process Unit

EPP Engineering Process Phase

EAEM Extended Automation Engineering Model

EP-I Engineering Process Input Interface

EP-O Engineering Process Output Interface

EPM Engineering Process Mapping

4. Revision history

4.1 Contributing and reviewing partners

Contributions Reviews Participants Representing partner

X X Federico Montori IUNET

X Géza Kulcsár IQL

 X Marek Tatara DAC

X Ákos Horváth IQL

4.2 Amendments

No. Date Version Subject of Amendments Author

1 2019-10-01 0.1 First draft Federico Montori

2 2019-10-25 0.2 Draft for evaluation Marek Tatara

3 2019-10-28 0.3 Compliance with AHF Federico Montori

4 2019-12-10 1.0 Final Version Federico Montori, Marek Tatara

 Document title: Arrowhead Tools best practices

 Version Status Date
 1.0 final 2019-12-10

 Page 8 (8)

4.3 Quality assurance

No Date Version Approved by

1 2019-12-10 1.0 Jerker Delsing

