
Arrowhead	Tools

Jerker	Delsing



www.arrowhead.eu

Primary	focus
• Automation	and	digitalisation	for:	

• Production	of	gods	and	services



www.arrowhead.eu

Key	areas	addressed
• Engineering	process	for	production	automation/digitalisation	
• Tool	chain	integration	
• Engineering	tools	
• Integration	platform



www.arrowhead.eu

Automating	the	engineering	process

IEC81346



www.arrowhead.eu

Process	integration	based	on	SOA



www.arrowhead.eu

Tool	mapping	to	engineering	process



www.arrowhead.eu

Tool	chain	integration	to	the	process



www.arrowhead.eu

Efficient	engineering	Tools	chains
How	to	move	data	efficient	and	securely	from	one	tool	to	another	

• Example	
• LindbäcksBygg	

• Vertex	-	building	CAD	tool	
• Speaks	BIM	XML	

• ABB	Robot	Studio	
• Speaks	proprietary	protocol	

• Arrowhead	Tools	wrapper	around	each	tool	
• Provides	protocol,	security,	encoding	translation	
• Provides	UC	specific	semantics	translation



www.arrowhead.eu

Efficient	engineering	Tools	chains
Vertex	-	building	CAD	tool	

Speaks	BIM	XML	

ABB	Robot	Studio	
Speaks	proprietary	protocol	

Arrowhead	Tools	wrapper	around	each	tool	
Provides	protocol,	security,	encoding	translation	
Provides	UC	specific	semantics	translation



www.arrowhead.eu

Tool	interoperability	based	on	SOA
Translation	between	different	protocols	

e.g.	HTTP,	CoAP,	MQTT,	OPC-UA,	…	
<<system>> 
Translation



www.arrowhead.eu

Tool	data	semantics	interoperability
Semantics	translation	problem	

Fig. 3: Illustration of the vector representation of the messages.

and format, these messages represent the same information
differently. For A-type messages, the name "n" encodes
location and type of sensor, whereas the name "bn" in B-
type messages only encode type of sensor. Location is instead
encoded using the longitude "Lon" and Latitude "Lat" with
a coordinate system specific to this simulation. The units "u"
are different for both message types, and the values "v"

have two modes: temperature in Kelvin (A-type) or degrees
Celsius (B-type), and actuation in Watts (A-type) or percent of
maximum power (B-type). 60000 randomly picked messages
of each type were put in a training dataset, and another 20000
messages were put in validation and testing datasets, each
containing 10000 messages.

To use these messages in a neural network, we transformed
them from strings to vectors containing only the dynamic
information. We separate the message fields into two kinds,
categorical and continuous. The value fields are continuous,
due to them representing a continuous variable, and the "n",
"u" (A-type), "bn", first "u", and second and third "v"

(B-type) are categorical fields because these fields can take
one of a small number of discrete values. Each value field has
a corresponding 1-hot vector representation, and the complete
message vectors are concatenations of the 1-hot representa-
tions of the categorical values, and the value of the continuous
fields. These vectors are illustrated in Figure 3.

B. Autoencoder with Backtranslation
The tested machine learning models are of two kinds, the

first kind of model has one autoencoder (one encoder and one
decoder) per message type, which we call a non-shared model.
The second kind of model has encoders and decoders like
the first, but those encoders and decoders share parameters,

Listing 1: Example messages.
CPS A message:

[

{"n": "OO_temp_sensor",

"t": 318350,

"u": "K",

"v": 263.4948599934143}

]

CPS B message:

[

{"bn": "temp_sensor", "bt": 321680},

{"u": "Cel", "v": 20.970178532724503},

{"u": "Lon", "v": "1"},

{"u": "Lat", "v": "-1"}

]

Fig. 4: Illustration of model architecture, with the outputs
produced during training

namely the layers closest to the latent representations. We call
this a shared model. Sharing parameters like this has been
shown to increase the performance of backtranslation strate-
gies in natural language translation [27]. For reference, we
also compare these unsupervised models to supervised models
translating from format A to B. The supervised models also
have the same encoder-decoder structure as the unsupervised
models to make the comparison between them fair, and to
test if model translation is at all possible using this translation
mechanism.

We vary the size of the encoders and decoders, between
one layer of 10 parameters, or two layers of 10 and 9
parameters. The latent space has 8 dimensions across all tested
models, which is more than sufficient to encode the messages
considered here. The shared models always have three layers,
which correspond in size to the innermost layers of the 2-
layer model. During training, four outputs are produced: One
autoencoded message m̂auto and one backtranslated message
m̂back of type A and B respectively, see Figure 4.

C. Training Procedure

Model parameters are updated using three different strate-
gies. The first is to update all parameters in both the autoen-
coding and backtranslation step, which we call strategy 1. The
second strategy is to update all parameters in the autoencoding
step, and decoder parameters in the backtranslation step, which
we call strategy 2. In strategy 3 the encoder parameters are
updated in the autoencoding step, the decoder parameters in
the backtranslation step, but the shared parameters are updated
in both steps. Since strategy 3 uses the shared parameters, it
is only tested on the shared model.

All unsupervised models use the same loss function

L =
1

2

X

S={A,B}

1

NS
cat + 1

�
LS
cat + LS

con

�
, (1)

where LS
cat is the sum of the categorical cross-entropy loss

for each categorical field in message type S and LS
con is the

mean-square loss for the continuous field message type S.
Furthermore, the models are tested on the accuracy, i.e. the
average accuracy for all categorical fields, and the mean square
error of the continuous fields.

All models use an Adam optimizer with Pytorch with weight
decay of 0.0001, with different learning rates between the
supervised and unsupervised models. The supervised models
use a flat learning rate of 0.01, and the unsupervised models

Same ontology 
Same data
Do not look the same!!



www.arrowhead.eu

Tool	data	semantics	interoperability
Semantics	translation	approach	

&36�$

0HVVDJH
VSDFH�$

($

'$ &36�%

0HVVDJH
VSDFH�%

(%

'%]W

*$ *%��-

0HVVDJH
VSDFH�$

($

'$ &36�%

0HVVDJH
VSDFH�%

(%

'%

/DWHQW�VSDFH
����������]W

X��\

&36�$

(QYLURQPHQW



www.arrowhead.eu

Tool	data	semantics	interoperability
Semantics	translation	results	

TABLE I: Tested models and their results.

Model Kind Strategy Size Accuracy Error

Max Mean Min Mean

0 non-shared 2 1-layer 0.70 0.44 0.57 4.0
1 non-shared 2 2-layer 0.73 0.38 0.50 4.9
2 non-shared 1 1-layer 0.66 0.39 0.48 6.7
3 non-shared 1 2-layer 0.74 0.34 0.71 12.0

4 shared 2 2-layer 0.70 0.34 0.54 15.0
5 shared 3 2-layer 0.75 0.41 0.43 2.7
6 shared 1 2-layer 0.69 0.33 0.53 12.0

7 supervised – 1-layer 1.0 1.0 0.16 0.17
8 supervised – 2-layer 1.0 0.99 0.16 0.19

used a cosine annealing with warm restarts schedule for the
learning rate. Each epoch, the learning rate starts at 0.005 and
drops to 0.0005 following a cosine curve. We used cosine
annealing with warm restarts to minimize the risk of getting
stuck in a local minimum, which often happened in the
unsupervised case when using a flat learning rate.

In summary, we had 9 different models (see Table I) that
were tested 30 times each with randomly initialized parameters
to evaluate the statistics of their performance.

IV. RESULTS

Figure 5 shows boxplots of the highest categorical field
translation accuracy (5a) and the lowest continuous field
translation mean square error (5b) attained during validation
for each of the 270 trained translators, organized by model.
Table I also contains summary statistics of the models. It is
clear that the unsupervised models performed much worse than
the supervised models. Such high performance of a supervised
model is expected when trained on fairly simple data. The best
performing model on average of the unsupervised models was
the non-shared model using training strategy 2, but the wide
spread in both translation accuracy and translation MSE means
we cannot definitely say that it was the best model. However,
models trained with strategy 2 have a slightly higher categor-
ical field translation accuracy and slightly lower continuous
field translation error, perhaps because fewer parameters are
being updated in each step in those models.

The large spread in best results are evidence of fragility
in training, which is one of the main reasons we tested the
shared models. However, it is evident that while the best results
are promising in terms of translation accuracy (> 70%), the
training procedure is still lacking in producing consistently
good results for both tested values. This cannot be due to
model capacity, since the unsupervised model has the same
shape as the unsupervised, the only influence must be the
training procedure. Overall, we find the best results to be
promising, but the training protocol needs to be made more
robust for translation systems like these to ever be used in
real-world scenarios.

V. DISCUSSION

While the average translation results are marginally better
than pure chance, the best results demonstrate the feasibility

(a)

(b)

Fig. 5: Boxplots of (a) highest translation accuracy for cate-
gorical fields and (b) lowest translation error for continuous
fields for all 270 models trained.

of using unsupervised learning to train translators for message
data. But the investigated training protocols are fragile and do
not produce accurate translation results. In this use case, we
can rule out model capacity as a source of error since the
supervised model translates both categorical and continuous



www.arrowhead.eu

Standards	currently	being	addressed	



www.arrowhead.eu

Engineering	tools	and	platform
Arrowhead	Framework	



Arrowhead	Framework	
Technology

Arrowhead	Framework	and	integrated	
engineering	tool	chains



www.arrowhead.eu

Technology	Properties
Implementation	of	Automation	and	Digitalisation	solutions	

In	production	
In	product	

Real	time	capabilities	
Run	time	flexibility	

Run-time	engineering	
Security	

Multi	level	security		
Evolvable	solutions	

On-site	validation	and	verification



www.arrowhead.eu

SOA approach

Pump speed controller

Level sensor

Pump

Service registry and discovery system

Service	registration

Orchestration
system

Authentication and 
Authorisation

system

Authorisation
Authentication

Orchestration

Service		discovery



www.arrowhead.eu

Complex system & System of systems
A micro service approach

Kura Kapua

A
pp

lic
at
io
n	

sy
st
em

ServiceRegistry 
system

Orchestration 
system

Authorisation 
system

A
ut
om

at
io
n	

su
pp

or
t		
sy
st
em

s

Management 
cloud

Application	
system

Kura

A
pp

lic
at
io
n	

sy
st
em

ServiceRegistry 
system

Orchestration 
system

Authorisation 
system

Sy
st
em

Re
gi
st
ry
	

D
ev
ic
eR

gi
st
ry

Edge edge 
1

Application	
system

Kura
A
pp

lic
at
io
n	

sy
st
em

ServiceRegistry 
system

Orchestration 
system

Authorisation 
system

Sy
st
em

Re
gi
st
ry
	

D
ev
ic
eR

gi
st
ry

Edge clouds 
2

Application	
system

Kura

A
pp

lic
at
io
n	

sy
st
em

ServiceRegistry 
system

Orchestration 
system

Authorisation 
system

Sy
st
em

Re
gi
st
ry
	

D
ev
ic
eR

gi
st
ry

Edge clouds 
N

Kura Kapua

A
pp

lic
at
io
n	

sy
st
em

ServiceRegistry 
system

Orchestration 
system

Authorisation 
system

A
ut
om

at
io
n	

su
pp

or
t		
sy
st
em

s

Azure 
cloud



<<system>> 
SystemRegistry

<<system>> 
DeviceRegistry

<<system>> 
EventHandler

<<system>> 
DataManger

<<system>> 
QoS

<<system>> 
Translation

<<system>> 
Gatekeeper

<<system>> 
Gateway

<<system>> 
Configuration

<<system>> 
PlantDescription

<<system>> 
WorkflowManager

<<system>> 
WorkflowExecutor

<<system>> 
ManagementTool

<<system>> 
TestTool

<<system>> 
ExchangeNetwork

<<system>> 
Semantics

<<system>> 
SecurityMitigation

<<system>> 
SecurityManager

<<system>> 
ConsumerCodeGen

<<system>> 
SafetyManager

<<system>> 
Choreography

<<system>> 
ServiceRegistry 

<<system>> 
Authorisation

<<system>> 
Orchestration 

<<system>> 
LegacyIntegration

<<system>> 
61499

<<system>> 
Installation

<<system>> 
CI/CD pipeline

<<system>> 
On-boarding

<<system>> 
SecurityCompliance

<<system>>
CertificateAuthority

<<system>> 
WSO2+CPN

<<system>> 
OrchestrationMitigation

Secure	on-boarding	and	
infrastructure:	

Interoperability

Inter	cloud	service	exchange

System	of	Systems	support

Execution	support

Management	support:

Supply	chain/product	life	cycle

Local	cloud	basic	properties:	

Engineering	tools

<<system>> 
FiWare

<<system>> 
OPC-UA

<<system>> 
BaSyx

<<system>> 
Eclipse Keycloack

<<system>> 
Eclipse-Hono

<<system>> 
Eclipse-Vono

<<system>> 
Eclipse-hawkBit

<<system>> 
Eclipse-Ditto

<<system>> 
ModbusTCP

<<system>> 
ROS



www.arrowhead.eu

SysML	modelling	and	engineering
SysML	1.6	profile	and	library	

Arrowhead	Framework	core	systems



www.arrowhead.eu

System	and	SoS	Modeling	-	SysML



www.arrowhead.eu

SysML	->	code
-	Autogeneration	of	code	for	SoS	integration	(in	progress)	

-	SysML	extraction	of	ontology	based	naming	(in	progress)	
ISO	10303	in	cooperation	with	e.g.	Jotne		

-	Transfer	of	SysML	plant	data	to	Arrowhead	PlantDescription	(in	progress)	

-	Semiconductor	fab	semantics	web	model	
RDF	graf	
integration	planed	for	Productive	Intelligence	project.	



www.arrowhead.eu

Security
Pay	load	encryption	

Who	is	allowed	to	consume	certain	data	
Authentication	schema	based	on	Certificates	X509	

Authorisation	for	a	specific	data	transfer	
X.509	certificates		

Audit	of	data	consumption	

Security	management	
Arrowhead	Management	Tool



www.arrowhead.eu

Security
Self	contained	local	clouds	

Private	networks	

Authentication,	Authorisation,	Audit,	Payload	encryption,		

Cloud	to	cloud	communication	over	open	internet	
GateKeeper	-	Gateway	solution	
Accepted	for	Engine	test	data	transfer	from	test	chamber	to	OEM



26

Automation	engineering	time

The Arrowhead project has been investigating local automa-
tion cloud concepts and technologies with support for several
of the above listed properties. The results have been released as
the open source Arrowhead Framework [14]. Using very lim-
ited and early implementations of the Arrowhead Framework,
a few companies have already released data on engineering
time for different automation applications, see Table I. The
results indicate engineering time saving in the order of 1:5
using the local automation cloud approach compared to legacy
technology!

TABLE I
ENGINEERING TIME FOR THE IMPLEMENTATION OF AUTOMATION

APPLICATIONS FOR LEGACY AUTOMATION AND LOCAL CLOUD
AUTOMATION.

Application Local cloud [h] Legacy [h] Gain
Building energy automation 6-8 40-48 1 : 5
Airport information automation 40 160-200 1 : 4.5
Recycling logistics 80 240-300 1 : 3.5

Fig. 2. A local cloud, where application systems are using the mandatory
and support core systems of the Arrowhead Framework.

F. Multi stakeholder integration and operation

Current trends point to automation solutions involving
multiple stakeholders requiring automated interaction with
strong commitments on security. Here the need for “private”
environments is obvious. Another requirement is the need for
authenticated and authorised exchange of information.

The concepts supporting local clouds have the properties
of providing “privacy” based on the local cloud protective
boundary. The authenticated and authorised exchange of in-
formation between the local clouds of involved stakeholders
is made possible by using the inter-cloud service exchanges as
discussed in Section III-D. This inter-cloud service exchange
supports service consumer authentication and authorisation
together with protocol level payload encryption, see Section
III-B. This way the approach fully supports establishing inter-
cloud service exchange security.

IV. LOCAL AUTOMATION CLOUD IMPLEMENTATION

To verify the technical and implementation feasibility of
local automation a small control application has been im-

plemented. The control application is a compartment climate
control.

The implementation has been made using the Arrowhead
Framework [13], [14]. Arrowhead Framework provides archi-
tectural definitions of software Systems providing the nec-
essary Services that enables the implementation of a self
contained local automation cloud. Using the open source Ar-
rowhead Framework, local clouds as shown in Figure 2 can be
implemented. This has been the basis for the implementation
of the compartment climate control application.

A. Climate control

A small control example has been implemented. The scope
is to control the climate in a compartment. For this purpose a
temperature sensor, an air fan, a heater air flap, a recirculation
air flap and a controller are provided as individual IoT devices,
see Figure 3 . The sensor and actuators devices were designed
using the Mulle IoT platform [41], [42]. The controller was
designed on a multicore CPU IoT platform. The Arrowhead
Framework mandatory core services were deployed on a small
Linux platform provided by EISTEC.

Fig. 3. A control loop cloud with the cloud administration services and a
closed control loop with a temperature sensor, a controller and a fan.

In this way a completely self contained local automation
cloud has been implemented. Successful compartment climate
control has been demonstrated. The self-contained local cloud
can execute the control loop isolated from other networks. The
real time performance of the local cloud did meet the stated
requirements. Full measurements of the real time performance
and security aspect are still to be performed.

V. CONCLUSION

The concept of local clouds has been introduced addressing
automation application and their specific requirements on real
time, security, scalability, ease of engineering and interop-
erability. Self contained local clouds have, as argued, clear
merits to these requirements compared to other type of cloud
computing, e.g. fog or edge computing.

The proposed concept of local automation clouds have
been successfully demonstrated in a small closed loop control
example, compartment climate control. Where re required
automation functionality and related real-time performance

Data	provided	by		
Abelko	Innovation	AB	
BnearIT	AB	

Supported	by	qualitative	analysis	comparing	ISA95	and	Arrowhead	local	cloud	
engineering	

Oscar	Carlsson,	Jerker	Delsing,	Engineering	of	Service-oriented	IoT	
Automation	Systems,	Submitted	to	IEEE	System	journal	



Question?

jerker.delsing@ltu.se

mailto:jerker.delsing@ltu.se


www.arrowhead.eu

28

ArrowHead	contribution
ISO20922	+	HW	security	as	enabler	for	secure	inter-cloud	communication


