

Page 1 (79)

ECSEL EU project 826452 - Arrowhead Tools
Project Coordinator: Professor Jerker Delsing | Luleå University of Technology

Document title: Arrowhead Tools Deliverable D3.3

Version Status Date
1.0 Final 2020-11-22
Authors: Johannes Kristan, Janina Schuster, Pal Varga

Deliverable D3.3

“Consolidated SOA framework platform
architecture, design and sw implementations of core
systems – Y2”

Editors: Johannes Kristan,
 Janina Schuster
 Pal Varga
 (johannes.kristan@bosch.io - janina.schuster@bosch.io – pvarga@tmit.bme.hu)

Work package leaders: Pal Varga,
 Szvetlin Tanyi
 Daniela Cancila
 (pvarga@tmit.bme.hu - szvetlin@aitia.ai - daniela.cancila@cea.fr)

Abstract
This document constitutes deliverable D3.3 of the Arrowhead Tools project.

It summarizes the state of the Service Oriented Architecture-based Arrowhead Framework – regarding its platform architecture,

design, and software implementations at its version 4.2. Furthermore, this document presents the plans and status for year 2 of

the Arrowhead Tools project, regarding the core components of the Arrowhead Framework, and very importantly, its

integration with various Eclipse IoT project parts.

This deliverable is Released by Work Package 3 (WP3) of the Arrowhead Tools project, which is responsible for the

consolidated Service Oriented Architecture. This includes the core concepts of the Arrowhead Framework, their design,

integration, and the Reference Implementation as well.

mailto:johannes.kristan@bosch.io
mailto:janina.schuster@bosch.io
mailto:pvarga@tmit.bme.hu
mailto:pvarga@tmit.bme.hu
mailto:szvetlin@aitia.ai
mailto:daniela.cancila@cea.fr

 Page 2 (79)

Table of Contents

1 INTRODUCTION ... 5

2 ARROWHEAD FRAMEWORK MANDATORY CORE – V4.2 ... 6

3 ECLIPSE IOT INTEGRATION... 7

3.1 RATIONALE FOR INTEGRATION ... 7
3.2 TECHNICAL DETAILS TO ECLIPSE IOT INTEGRATION EVALUATION AND RESULTS ... 8

3.2.1 Applications within the Arrowhead Framework .. 9
3.2.2 Summary ... 12

3.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 13
3.3.1 Relevant Technology Involved... 13
3.3.2 Targeted Framework integrations ... 18

3.4 STATUS OF WORK .. 19
3.4.1 Eclipse hawkBit as Configuration System .. 19
3.4.2 Eclipse Hono as Translation System .. 25

4 ECLIPSE KURA AND KAPUA .. 29

4.1 RATIONALE FOR INTEGRATION ... 29
4.2 TECHNICAL DETAILS ... 30
4.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 31
4.4 STATUS OF WORK .. 32

5 ONBOARDING PROCEDURE .. 32

5.1 RATIONALE FOR INTEGRATION ... 32
5.2 TECHNICAL DETAILS ... 32

5.2.1 Onboarding Controller System .. 33
5.2.2 DeviceRegistry System ... 34
5.2.3 SystemRegistry System .. 35

5.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 36
5.4 STATUS OF WORK ...37

6 MONITORING AND STANDARD COMPLIANCE VERIFICATION ... 37

6.1 RATIONALE FOR INTEGRATION ..37
6.2 TECHNICAL DETAILS ..37
6.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 38
6.4 STATUS OF WORK .. 38

7 VITAL-IOT ... 38

7.1 RATIONALE FOR INTEGRATION ... 38
7.2 TECHNICAL DETAILS ... 39
7.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 40
7.4 STATUS OF WORK .. 42

8 IKERLAN TOOL ADAPTER ... 43

8.1 RATIONALE FOR INTEGRATION ... 43
8.2 TECHNICAL DETAILS ... 44

8.2.1 Software components ... 44
8.2.2 Configuration Files .. 44

8.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 45
8.4 STATUS OF WORK .. 46

9 EXTENDED HISTORIAN SERVICE... 46

 Page 3 (79)

9.1 RATIONALE FOR INTEGRATION ... 46
9.2 TECHNICAL DETAILS ... 48
9.3 INTEGRATION IN ARROWHEAD FRAMEWORK ... 49
9.4 STATUS OF WORK .. 49

10 WAE (WEB-OF-THINGS ARROWHEAD ENABLER) .. 49

10.1 RATIONALE FOR INTEGRATION ... 50
10.2 TECHNICAL DETAILS .. 50
10.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 51
10.4 STATUS OF WORK ... 53

11 PYTHON CLIENT LIBRARY .. 53

11.1 RATIONALE FOR INTEGRATION ... 53
11.2 TECHNICAL DETAILS .. 53
11.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 53
11.4 STATUS OF WORK ... 53

12 SEMANTICS TRANSLATOR ... 54

12.1 RATIONALE FOR INTEGRATION ... 54
12.2 TECHNICAL DETAILS .. 54
12.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 55
12.4 STATUS OF WORK ... 55

13 CODE GENERATION .. 55

13.1 RATIONALE FOR INTEGRATION ... 55
13.2 TECHNICAL DETAILS .. 55
13.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 56
13.4 STATUS OF WORK ... 56

14 INTEGRATION OF OPC-UA SERVER WITH LATE BINDING .. 56

14.1 RATIONALE FOR INTEGRATION ... 56
14.2 TECHNICAL DETAILS .. 56
14.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 56
14.4 STATUS OF WORK ... 57

15 TRANSLATOR SYSTEM ... 57

15.1 RATIONALE FOR INTEGRATION ... 57
15.2 TECHNICAL DETAILS .. 57
15.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 57
15.4 STATUS OF WORK ... 57

16 EXCHANGE NEGOTIATION SERVICE (FROM PRODUCTIVE 4.0) .. 57

16.1 RATIONALE FOR INTEGRATION ... 57
16.2 TECHNICAL DETAILS .. 57
16.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 58
16.4 STATUS OF WORK ... 58

17 SECURE DATA SHARING (NEW CONCEPT)... 59

17.1 RATIONALE FOR INTEGRATION ... 59
17.2 TECHNICAL DETAILS .. 59
17.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 60
17.4 STATUS OF WORK ... 60

18 PLANT DESCRIPTION ENGINE (FROM PRODUCTIVE 4.0) ... 60

 Page 4 (79)

18.1 RATIONALE FOR INTEGRATION ... 60
18.2 TECHNICAL DETAILS .. 60
18.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 61
18.4 STATUS OF WORK ... 61

19 AUTHORIZATION BY POWER OF ATTORNEY (NEW CONCEPT) .. 61

19.1 RATIONALE FOR INTEGRATION ... 61
19.2 TECHNICAL DETAILS .. 62
19.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 62
19.4 STATUS OF WORK ... 62

20 SOFTWARE DEPLOYMENT AND VIRTUALIZATION (NEW CONCEPT) ... 62

20.1 RATIONALE FOR INTEGRATION ... 62
20.2 TECHNICAL DETAILS .. 62
20.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 63
20.4 STATUS OF WORK ... 63

21 WORKFLOW MANAGEMENT/EXECUTOR (FROM PRODUCTIVE 4.0) ... 63

21.1 RATIONALE FOR INTEGRATION ... 63
21.2 TECHNICAL DETAILS .. 63
21.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 64
21.4 STATUS OF WORK ... 64

22 WORKFLOW CHOREOGRAPHER / WORKFLOW EXECUTOR ... 64

22.1 RATIONALE FOR INTEGRATION ... 66
22.2 TECHNICAL DETAILS .. 66
22.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 68
22.4 STATUS OF WORK ... 68

23 ENERGY IOT MONITORING PLATFORM .. 68

23.1 RATIONALE FOR INTEGRATION ... 68
23.2 TECHNICAL DETAILS .. 69
23.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 69
23.4 STATUS OF WORK ... 70

24 ARROWHEAD FRAMEWORK ON STM32 .. 70

24.1 RATIONALE FOR INTEGRATION ... 70
24.2 TECHNICAL DETAILS ... 70
24.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 70
24.4 STATUS OF WORK ... 70

25 KEYCLOAK INTEGRATION .. 71

25.1 RATIONALE FOR INTEGRATION ..71
25.2 TECHNICAL DETAILS ...71
25.3 INTEGRATION IN ARROWHEAD FRAMEWORK .. 72
25.4 STATUS OF WORK ..73

26 CONCLUSIONS ... 73

27 REFERENCES .. 74

28 REVISION HISTORY .. 77

28.1 CONTRIBUTING AND REVIEWING PARTNERS ... 77
28.2 AMENDMENTS .. 78
28.3 QUALITY ASSURANCE ... 79

 Page 5 (79)

1 Introduction

The Work Package 3 in the Arrowhead Tools project is responsible for the consolidated Service

Oriented Architecture. This includes the core concepts of the Arrowhead Framework, their

design, integration, and the Reference Implementation as well.

The Arrowhead Tools project introduced two very important additions into the life of the

Arrowhead Framework: one is the need for long-term governance; another is the interaction

and integration with external frameworks and tools. Long-term governance is now driven by

the fact that Arrowhead IoT became officially part of the Eclipse project family. Contribution

to source code, release and issue tracking are all very well regulated in Eclipse, which means

that the implementation-related issues are on very good track (and hard to get drop off that track

actually). The other important addition is the interaction and integration with other frameworks

and tools. A great part of this has also accomplished by the official agreement between Eclipse

Foundation and Arrowhead Tools: now various Eclipse projects are open to actively collaborate

with Arrowhead, since they bear the same license.

The Chapters of this deliverable can be categorized into three sets. The first is the description

of Arrowhead Core Systems at v4.2 of the reference implementation. The second set is those

chapters that deal with External Tool interactions and integrations (such as Eclipse Vorto, Ditto,

Hono, Hawkbit, or Kapua and Kura, among others). The third set are those concepts and

implementations that have been around or newly popped up, based on industrial requirements,

within the Arrowhead Tools project or its predecessors, and have been created or further

improved in the previous period – and continue to do so in the upcoming project periods.

 Page 6 (79)

2 Arrowhead Framework Mandatory Core – v4.2

The Arrowhead Framework core went from v4.1.3 to v4.2 in this period which is backward

compatible with the previous version. Beside correcting reported issues, various additional

changes were designed and implemented. Additional to the already released core systems:

- Service Registry,

- Orchestrator,

- Authorization,

- Event Handler,

- Gatekeeper,

- Gateway,

in this period, further supporting core systems have been released officially, namely:

- Certificate Authority,

- QoS Monitor,

- Onboarding Controller,

- Device Registry,

- System Registry,

- Workflow Choreographer.

The complete documentation of the v4.2 reference implementation - with user guides,

developer guides and core system API details - is publicly available at:

https://github.com/arrowhead-f/core-java-spring

While the the brief description of all core systems were included in D3.2, please see a brief

”motto” of those supporting core systems that have been officially released:

- The main purpose of the Certificate Authority supporting core system is issuing signed

certificates to be used in the local cloud. The issued certificates may be revoked from

the Management Interface. Systems may check whether a certificate has been revoked,

and refuse their acceptance.

- The purpose of QoS Monitor supporting core system is providing QoS (Quality of

Service) measurements to the QoS Manager (which has became part of the

Orchestrator core system for implementation reasons).

- The purpose of the Onboarding Controller supporting core system is to be the entry

board for the onboarding procedure. The onboarding controller sits at the edge of the

Arrowhead local cloud. It is not only reachable from within the cloud by authorized

systems, but also from the public through its "accept all" interfaces. Any client may

authenticate itself through an Arrowhead certificate, through an authorized

manufacturer certificate, or simply through a shared secret.

- The Device Registry supporting core system provides the database, which stores

information related to the Devices within the Local Cloud. The purpose of this System

is therefore to allow:

o Devices to register themselves, making this announcement available to other

Application Systems on the network.

https://github.com/arrowhead-f/core-java-spring

 Page 7 (79)

o They are also allowed to remove or update their entries when it is necessary.

o Generate a client certificate which can be used by the Device to register its

Systems

- The System Registry supporting core system provides the database, which stores

information related to the System of the currently actively offered Services within the

Local Cloud. The purpose of this System is therefore to allow:

o Devices to register which Systems they offer at the moment, making this

announcement available to other Application Systems on the network.

o They are also allowed to remove or update their entries when it is necessary.

o Generate a client certificate which can be used by the System to offer Services

- The Workflow Choreographer supporting core system makes it possible to execute

pre-defined workflows through orchestration and service consumption. Each

workflow can be divided into three segments, namely Plans, Actions and Steps. Plans

define the whole workflow by name and they contain Actions which group coherent

Steps together for greater transparency and enabling sequentialization of these Step

groups.

3 Eclipse IoT Integration
The Eclipse Foundation was created in 2004 as an independent not-for-profit organization, with

the aim to foster the development of open source projects and provide a vendor-neutral

community where individuals, as well as corporations can collaborate. It acts as the managing

entity for the Eclipse community, which consists of individual developers and corporations.

The foundation is governed by an independent board of directors and is host to multiple working

groups. One of them is the Eclipse IoT working group, which is actively developing open source

technology for the Internet of Things. To this point, the working group combines the work on

over 30 different projects that each target another aspect of IoT deployments ranging from

implementations for actual devices and gateways over protocol implementation to components

for building IoT cloud backends.

One of the organizational achievements – supporting long term governance – in this period was

that the Eclipse Arrowhead project initiative has been accepted by the Eclipse Foundation.

This included various organizational and administration steps, although technically the most

challenging was the code review that the Arrowhead Core Systems had to go under. This was

successful, so the main obstacles of integrating Eclipse IoT projects and the Eclipse Arrowhead

IoT project have been removed. The following sections detail the various Eclipse IoT projects

that have commonalities – and from now on, working towards similar goals partially – with the

Eclipse Arrowhead IoT project.

3.1 Rationale for Integration
The accumulation of IoT technology in the Eclipse IoT Working Group is one of the largest

collections in the field, with many active corporate contributors from the industry, including a

series of production-ready software artifacts. Each project proposed under the umbrella of this

working group undergoes a standardized review process, guaranteeing certain quality measures

for the development process like the reporting of vulnerabilities. Furthermore, the Eclipse

 Page 8 (79)

foundation defines an intellectual property due diligence process, ensuring a project does not

infringe anyone’s intellectual property rights, e.g. by license clearing all software dependencies.

Moreover, some of the projects, even though developed as standalone-applications, are

designed to work together to build feature rich, reliable IoT-Applications and scenarios. The

working group provides software that ranges from cloud platforms to applications that run on

constrained devices and is therefore very eclectic. All those reasons make Eclipse IoT

technology a good complement to the Arrowhead Framework, which allows to achieve the

targets of the Arrowhead Tools project.

3.2 Technical Details to Eclipse IoT Integration Evaluation and Results
The Eclipse IoT working group differentiates between three hierarchical layers within the IoT

infrastructure [1] as depicted in

Figure 3.1. Constrained sensors and actuators at the bottom that measure data and execute

commands but do not process or evaluate information due to low compute power. These devices

interact with gateways at the edge, which build an intermediate layer to the IoT cloud platforms.

The cloud enables high scalability and fast processing of large data volumes, data aggregation

and long-term analysis. Eclipse IoT currently comprises approximately 35 different open source

projects [2] from different fields of application. Most of the projects can be associated with one

of the three layers.

We evaluated to which extent these existing technologies do harmonize with the service-

oriented Arrowhead concept in an industrial IoT context. As Eclipse IoT is not primarily aimed

at industrial use cases, not all projects are suited. However, the Eclipse IoT working group did

identify their open source projects that are ready for potential Industry 4.0 application in a white

paper [3]. Table 1 lists all projects mentioned in that whitepaper as suitable and a classification

regarding their position in the Eclipse IoT working group stacks, if possible.

The less hierarchical nature of the Arrowhead Framework does potentially interfere with the 3-

tiered approach of the Eclipse IoT working group. At least the projects belonging to the ”IoT

Cloud Platform” layer generally follow a more centralized principle, whereas the Arrowhead

Framework advocates a distributed approach. On the other hand, the SOA-structure of

Arrowhead allows simple replacement and integration of new modules and is hence ideally

suited for incorporating existing software components. Moreover, the Eclipse IoT Cloud

platform projects feature a mostly homogeneous software stack, relying mainly on Java, Spring

[5], Vert.x [4] and other open source modules.

 Page 9 (79)

Figure 3.1 Eclipse IoT Stack

Table 3.1 Eclipse IoT Projects with Relation to Industrial Use Cases

Project Category Layer

Eclipse Milo Data Aggregation

Eclipse

Mosquitto
Data Aggregation Cloud

Eclipse Paho Data Aggregation Devices

Eclipse Unide Data Aggregation

Eclipse OM2M Data Aggregation

Eclipse 4diac Data Aggregation

Eclipse Kura Data Aggregation, Security, Digital Twin Gateways

Eclipse Leshan Security, Device Management
Gateways,

Cloud

Eclipse Keti Security

Eclipse Wakaama Device Management Devices

Eclipse Kapua
Device Management, Event Management and Data

Analysis
Cloud

Eclipse hawkBit Device Management Cloud

Eclipse Hono Event Management and Data Analysis Cloud

Eclipse Ditto Digital Twin Cloud

3.2.1 Applications within the Arrowhead Framework
The functional, intentional and technical fit of the various Projects of the Eclipse IoT Working

Group for their integration with the Arrowhead Framework was studied in [31]. It provides a

short introduction and evaluation of each eligible Eclipse IoT project and its usability within

one or multiple Arrowhead systems. One result is that almost none of the projects can be used

without adaptation or without at least combining them with other modules. However, many of

them could potentially build the foundation of an Arrowhead component or at least function as

a structural archetype. The following enumeration only considers Eclipse components, which

have a connection to at least one of the Arrowhead systems. Figure 3.2 gives an overview of

the considered Eclipse IoT projects and their possible connection with respective Arrowhead

services.

 Page 10 (79)

Figure 3.2 Comparison of Arrowhead systems (left) and eligible Eclipse IoT components

(right). A connection indicates a potential application of an Eclipse IoT project in one of the

generic Arrowhead systems. The order of Eclipse IoT systems is arbitrary, as well

Based on those results Bosch.IO focuses on the integration of the components of the projects

Eclipse Hono, Eclipse Ditto and Eclipse hawkBit. Eurotech is focusing on the integration of the

projects Eclipse Kura and Kapua (see Chapter 4). Therefore, in the next sections the projects

Bosch.IO is focusing on are introduced here and Kura and Kapua in the next chapter.

Orthogonal to the Eclipse IoT projects named before, which support the setup of Systems of

 Page 11 (79)

Systems, is Eclipse Vorto. It supports the modelling and integration of devices with the

aforementioned projects. Eclipse Vorto, even though it is discussed in other Work Packages (4,

5, 6), has relations to the work in Work Package 3 and therefore is shortly introduced here.

3.2.1.1 Eclipse Vorto

Eclipse Vorto is a Domain Specific Language (DSL) for digital twins within the IoT world,

inspired by Java [6]. It offers a generic possibility to describe the characteristics of a hardware

device, such as name or size and attributes like temperature or location, but also its

functionalities. Vorto also enables developers to define dependencies between different devices

and provides a repository to share generic building blocks to reuse for new device definitions.

Moreover, Vorto allows the creation of code generators, enabling the generation of device

integration stubs.

Some of that functionality could be used for building a device-, system-, or service- registry.

The standardized description could easily be used to create a device-registry API, which offers

detailed information about each deployed device. More information on the Arrowhead

definition of the service, system, and device registry can be found in [8] and [7]. The reusability

aspect of Vorto and its building blocks repository allows the simple creation of new device

descriptors based on existing ones. This approach of consecutive modules would also facilitate

the implementation of more complex structures, such as entire systems or services. Hence, a

system- or service- registry, depending on the use case, is conceivable as well. However, with

rising complexity, Vorto’s DSL might not be the best approach.

Speaking of complex systems, a plant description model could also be designed using an

Eclipse Vorto definition. The Arrowhead plant description system provides a basic overview

about a plant’s layout (for more information see [9]). As Vorto also offers a meta- model to

describe the relationship between different modules and their dependencies, Vorto could be an

alternative to non-standardized modelling techniques. Moreover, using the same DSL for

multiple systems in the same Arrowhead implementation presumably saves resources.

3.2.1.2 Eclipse Ditto

Ditto provides a service that manages so called “digital twins” [18]. In Ditto, a digital twin is a

software pattern where all relevant subjects from the physical world in an IoT context, such as

sensors or machines but also products during their manufacturing cycle, are each represented

in the digital world. Each representation has its own attributes and characteristics, such as IDs,

names or sensor values, and acts as a single point of truth for each given device. Ditto organizes

the access to these digital twins, providing a safe and multi-protocol-capable API that allows

integration with other backend infrastructure and features individual access policies.

Within the Arrowhead context, Ditto could be used for implementing a device registry.

However, this device registry would not just be a repository for all existing devices, as the

Arrowhead Framework declares it (for more see [7]), but even more handle changing device

states.

Hence, it could be argued that such an implementation in fact exceeds the scope of a device

registry in the Arrowhead context. Therefore, it seems more sensible to introduce a new digital

twin core system. This system would not just be a registry for all devices but would also persist

its current state and makes it available at any time. Moreover, Ditto seamlessly integrates with

Eclipse Hono, making it a perfect match in serving even more different protocols and devices.

 Page 12 (79)

3.2.1.3 Eclipse Hono

Hono is a multi-protocol IoT hub, connecting large numbers of devices with a cloud- based

business application [21]. Its main benefit is its diverse protocol compatibility among device

interfaces, such as HTTP, MQTT, CoAP, and AMQP 1.0. However, business applications have

to connect using AMQP 1.0. Hono supports three kinds of data exchange. First, it allows the

transmission of telemetry data, such as temperature or humidity information from sensors to a

business application. Second, Hono also allows the transmission of events, indicating e.g. the

completion of a process step in an industrial use case. Third, business applications can initiate

so called command and control interaction patterns with selected devices to trigger certain

actions, such as adjusting a heating system. There are two imaginable applications of Hono

within the Arrowhead context.

First, Hono does already cover an important aspect of every IoT infrastructure, which is linkage

of hardware devices with business applications on higher levels in the IoT hierarchy. Especially,

devices that do not expose RESTful APIs via HTTP and potentially rely on a broker

infrastructure, such as used by publish-subscribe protocols (e.g. MQTT) benefit from a

centralized device hub. Moreover, Hono provides standardized communication patterns as

described above.

In addition, Hono’s multi-protocol capability could be repurposed to build a translation system.

The purpose of the Arrowhead translation system is to provide a bridge betwen systems that do

use the same protocol for communication (for more information see [19]). This translation

system would enable easy transformation of e.g. MQTT to HTTP or CoAP.

3.2.1.4 Eclipse HawkBit

HawkBit is another device management solution targeted at software rollouts [20]. The

application comprises the core module — the update server — a management UI and multiple

APIs. The first API exposes a REST-based management interface for third-party applications,

the second API provides direct device integration via REST and polling, and the third API

offers device integration via AMQP. This latter endpoint enables the incorporation of

intermediate applications to feature different protocols, such as OMA-DM, LWM2M, or

proprietary ones. HawkBits’ software rollout process allows sophisticated configuration

options, such as grouping of devices, cascading deployment, and fine-grained monitoring.

Hence, Eclipse HawkBit appears to be a potential candidate for an Arrowhead configuration

system implementation. Especially its extensibility for further protocols allows the integration

of a wide variety of devices, but also enables the combination with Eclipse Leshan to feature

LWM2M-managed devices. However, configuration and update procedures are highly critical,

as they could potentially compromise a multitude of devices by implanting malicious code.

Therefore, the existing HawkBit authorization measures would need to be integrated with the

Arrowhead authorization system.

3.2.2 Summary
As the evaluation of the existing Eclipse IoT stack reveals, a lot of different frameworks and

tools are available that can either complement the existing Arrowhead Framework or could

serve as industry grade implementations of some of its core services.

As a result of the evaluation and the identified technical needs of some of the use cases

(especially in Work Package 9). Bosch.IO is concentrating on the integration of the Eclipse

Projects Eclipse Hono, Eclipse Ditto and Eclipse hawkBit.

 Page 13 (79)

3.3 Integration in Arrowhead Framework
As described in the previous section, the Eclipse IoT working group provides a wide variety of
projects that could be integrated into the Arrowhead concept. As stated earlier Bosch.IO focuses
on the integration of

• Eclipse Hono as a device hub
• Eclipse Hono as a translation system
• Eclipse hawkBit as a configuration system
• Eclipse Ditto as a digital twin system

All three of the mentioned Eclipse projects are sophisticated, production ready IoT applications
and were selected for further analysis, as they were identified to be best equipped for an
Arrowhead integration.
To fully comprehend the following explanations of the developed proofs of concept, the chapter
begins with a short introduction into various technical concepts and frameworks that are used for
the implementation.

3.3.1 Relevant Technology Involved
To understand the descriptions and implementations of the practical integration attempts, the

following section introduces the technology used. The description of the Arrowhead

Framework is already done elsewhere. However, in this section we discuss the Arrowhead

token-based authentication mechanism, which is needed in every integration attempt. The

section also provides a short introduction to reactive programming, the development paradigm

which is used to realize the integrations. This includes the presentation of two reactive

frameworks, namely Akka and Eclipse Vert.x. And finally, a short description of the involved

messaging protocols and their conceptual differences is given.

3.3.1.1 Token based authentication

As explained above, the current Arrowhead reference implementation allows other systems to

authorize, using a token based approach, called JSON Web Tokens (JWTs) [22]. JWTs enable

an independent authentication authority, such as the Arrowhead authorization system, to issue

a security token, containing additional information about the client, called claims. Generally,

there exist two different types of JWTs, which extend the specification: JSON Web Signatures

(JWS) [24], and JSON Web Encryptions (JWEs) [23]. The former guarantees that a service

consumer is who it claims to be and ensures that the payload is unaltered. This is done by using

the issuer’s public key to check the attached signature. However, the payload, which might

contain sensitive information, is not encrypted in this case. JWEs, as the name suggests, provide

payload encryption by using the receiver’s public key and hence protect the payload from being

visible to anyone else than the receiver.

JWS consist of three parts — header, payload and signature — separated by dots. The header

contains information about the signing/encryption algorithm used, the payload encapsulates the

claims in JSON notation, and the signature is used for validation.

A JWE consists of 5 parts, a header, an encrypted symmetric key, an initialization vector, the

actual ciphertext, and an authentication tag. The symmetric key is used for content

encryption/decryption and is encrypted asymmetrical. The initialization vector and the

authentication tag are needed for encryption and validation.

The JWT standard also allows the combined usage of both versions, resulting in a nested JWT,

where a JWS is embedded as the payload of a JWE. This method is used by the current

 Page 14 (79)

Arrowhead authorization system implementation, which is necessary due to the fact that not all

participating systems might use transport based encryption. However, the token claims contain

information that equips a potential attacker with information about the local cloud architecture.

Additionally, the signature contained by the encompassing JWS, enables the validation of the

identity of the service consumers.

The Arrowhead reference implementation uses the combined JWT approach (JWS inside JWE)

in a custom authorization flow. This implies e.g. that the encoded claims do not follow any

standardized naming convention. However, there exists a more sophisticated and complex

token based authentication mechanism, called OpenID Connect [25], which is based on JWTs

for content encoding and the OAuth [26] authorization flow. Eclipse Ditto, like many other

open source components, provides authentication and authorization via OpenID Connect,

which is not compatible with the Arrowhead mechanism. This is due to the fact, that OAuth

and OpenID connect are primarily employed in use cases involving HTTP and an active user

entering his or her credentials into a UI. However, RFC 8705 [27] proposes an authorization

flow, based on client certificate authentication, which would then enable more automated

scenarios. Some OpenID connect authorization servers, such as Keycloak [28] already provide

client certificate-based authentication.

3.3.1.2 Reactive Programming in Vert.X and Akka

The Arrowhead Framework does not specify the number of deployed devices, which is bound

to the respective usage scenario. However, especially in IoT scenarios, the number of

interconnected devices being part of the system might not only be generally high, but also vary

over time, as the system evolves. Hence, the Arrowhead Framework has strong requirements

regarding scalability, i.e. an Arrowhead-based system and all its comprising components should

be able to adapt to changing parameters. To fulfill the required scalability requirements, our

integration relies on the reactive programming approach, introduced in the following.

When designing new Arrowhead-ready components for the Internet of Things it is important to

examine the usual application scenario first. A potentially large number of devices, most of

which being limited in their resources, meaning processing power and storage capacity,

exchange messages over a network. The more complex and thus better equipped components

are responsible to bring in a certain degree of reliability to this system, which is especially

necessary when it comes to highly critical scenarios, where a lost message can result in high

costs. Hence, it is important to guarantee message delivery where necessary by employing

Quality of Service (QoS) measures, which can be achieved by using a message broker

infrastructure as explained in the next section. Moreover, the more complex application

components need to be able to handle large amounts of requests, which can lead to overloaded

servers.

To achieve a reliable infrastructure, which is capable of handling many requests within

reasonable time, and which is resilient, it is important to select the right technology stack. The

Reactive Manifesto [Boner2014] advocates a development approach, focusing on four key

aspects, namely responsiveness, resilience, elasticity, and being message driven. These

specifications are defined as follows [30]:

Responsive: Reactive systems should always be able to respond to new requests rapidly and

provide consistent quality of service

Resilient: Occuring failures must be contained within the originating component of the reactive

system and an error may not lead to a crash of the entire system.

 Page 15 (79)

Elastic: To guarantee responsiveness, even under high workloads, the system needs to be able

to adapt, by dynamically increasing allocated resources.

Message driven: To achieve the above-mentioned goals, a reactive system consists of several

microservices, interacting by transmitting messages. This guarantees the high degree of

decoupling and isolation, which allows for scalability, resulting in resilience and elasticity.

Obviously, these characteristics are favorable in almost any software application, however in

Industrial IoT use cases they are more necessary than ever. Imagine a smart home scenario,

where users are able to control their light bulbs with their phone. In this example, failures are

by far less critical, than in a complex manufacturing line, where an error can result in high

financial losses.

In the conventional imperative programming paradigm, programs make direct use of OS threads

to utilize the available resources — meaning processing power — as efficiently as possible.

Transferring this model to server applications, each incoming request will be delegated to a

forked OS thread, which, for instance, handles a blocking database request in the background

and subsequently returns a response to the client. In this programming model, every instruction

gets executed sequentially and blocking I/O operations, causing a system call, result in a thread

context switch. However, scaling this approach eventually fails, as thread management,

including context switching, comes with a high overhead of workload with numerous

concurrent requests. Even the usage of thread pools ultimately limits the number of active

connections.

The reactive programming approach is providing a different concurrency model, opposing the

thread-per-request strategy. Instead, reactive systems handle requests in an asynchronous, non-

blocking way, where work-intensive tasks or I/O operations do not block an entire OS thread.

Currently, there exist a few frameworks for developing reactive systems, two of which are

presented here, namely Eclipse Vert.x and Akka. Both technologies provide a toolbox for

developing responsive microservices. They are also the basis of two of the projects planned to

be integrated with the Arrowhead framework, namely Eclipse Hono and Eclipse Ditto.

3.3.1.3 Eclipse Vert.x

Eclipse Vert.x implements the Reactor pattern, which employs a so-called event loop to process

asynchronous events. In a server application, a new client connection is handled quickly by a

main thread and potentially blocking operations, such as database requests, get resolved

asynchronously by registering a callback function reference. Thus, the main thread remains

responsive to new connection requests. Once a blocking operation finishes, the event and

attached results are inserted into the event loop, which then takes care of the response

processing. However, the most important rule when using Vert.x, is that there may be no

blocking instruction executed by the event loop. Otherwise, new client connections could not

be handled until the thread finished the blocking operation.

In contrast to similar reactive frameworks, such as Node.js which also features an event queue

approach, but is limited to a single thread, Vert.x harnesses the full potential of multi core

processors by applying a thread pool for event loops. This effective usage of resources is also

reflected in the latest TechEmpower benchmarks [31].

In addition to the basic concurrency model, Vert.x provides further tools and patterns to

structure reactive systems and organize their communication. The basic unit in which

developers divide their code are so-called verticles. Verticles encapsulate application

functionality, and are always executed on the same event loop, as depicted in Figure 4. Hence,

the developer does not need to think about concurrent access to certain resources, as each event

 Page 16 (79)

loop is executed by its dedicated thread. In the default case, Vert.x starts two event loops per

existing CPU, but this number is configurable. As reactive systems use message driven

communication between their internal components, Vert.x provides the so-called event bus,

which can be used to transmit data between the different verticles of an application.

Figure 3.3 Verticle architecture in Eclipse Vert.x and reactive execution model on a dual core

CPU with six deployed verticles.

Moreover, Vert.x offers a variety of native, non-blocking APIs to integrate with external

systems, such as databases, message brokers, or web services. However, in case developers, in

the absence of any alternatives, have to utilize a blocking library, Vert.x allows employing

background threads to handle these operations.

One of the main benefits of using Vert.x, is that it is polyglot, which means that code can be

written in Java, Kotlin, JavaScript, Groovy, Ruby and Scala.

3.3.1.4 Akka

In contrast to Vert.x, Akka implements the so-called Actor model [32], which was introduced

by Hewitt et al. in 1973. An actor is the smallest building block in Akka, comparable to Vert.x

verticles and encapsulates functionality of an application component and organizes its own

state, which is not accessible from other actors. Each actor can

1. send messages to other actors,

2. receive messages by other actors,

3. and define mappings how to react to what kind of received message.

Upon message reception, actors pick an available thread from the thread pool. Also, they are

guaranteed to run single-threaded, which is why they do not require parallelism measures, such

as synchronization or locks. The messages they receive are processed in sequential order and

their handling may result in passing messages to other actors. This implies again, that no

blocking code may be executed in a message handler function, as otherwise the entire actor

would be unable to process further messages. Similar to Vert.x, blocking APIs generally should

be avoided, but can be invoked by passing them to dedicated worker threads.

 Page 17 (79)

Figure 3.4 Akka Actor model architecture and communication flow.

In contrast to Vert.x, actors can spawn child actors which enables hierarchical system

composition. Moreover, Akka also allows request-response based inter-actor communication

patterns. However, these techniques come with loss of performance, as they involve Futures

and the spawning of transient, internal actors.

Akka currently supports the programming languages Scala and Java and is used in the

implementation of Eclipse Ditto. The underlying component, namely Eclipse Ditto, is built

upon Akka. Hence, to seamlessly fit the Ditto microservices, the integration component is built

of Akka actors.

3.3.1.5 IoT protocols

The following sections involve different application protocols, primarily used in IoT use cases,

namely MQTT, AMQP, CoAP, and HTTP. This section provides a short explanation about

these standards, including their characteristics and differences. More details can be found in

[33], which this short comparison is based on.

MQTT is a many-to-many protocol, where each client connects via TCP with a broker, which

then routes the incoming packages to the correct receiver. The sender directs its messages to a

topic, which the recipients have to subscribe to. MQTT thus features a publish/subscribe based

interaction pattern. It is designed to be implemented by constrained devices and also allows the

usage of UDP on the underlying transport layer if necessary (MQTT-SN). Moreover, MQTT

features TLS based encryption.

AMQP also involves a broker based infrastructure, but primarily focuses on reliability and

security. In contrast to MQTT it allows publish/subscribe and request/response based

interaction, and is less focused on resource limited devices, but more on high throughput. It

uses TCP for transportation, TLS for security, and SASL [34] for authentication. Currently,

there exist different versions of AMQP, which are not backwards compatible. RabbitMQ is a

popular AMQP 0.9.1 message broker, whereas Apache Qpid implements AMQP in version 1.0.

CoAP is standardized by the IETF and the youngest of the presented protocol standards. It

provides a REST like mechanism involving URIs, such as HTTP, but requires less resources

and is thus an option for constrained devices to be implemented. In addition to request/response

 Page 18 (79)

based interactions, it allows a special form of the publish/subscribe pattern [35]. CoAP uses

UDP for transportation and DTLS or IPsec for encryption.

HTTP actually is a web protocol and not primarily used in IoT contexts. However, due to its

wide distribution it also finds application there. It features a request/response interaction

pattern, uses TCP for transportation, and TLS for encryption. It is often used to realize RESTful

services.

3.3.2 Targeted Framework integrations
The following section describes what integrations are planned and how they are approached.

3.3.2.1 Eclipse Hono as a Translation System

As the Arrowhead Framework comprises an extensible number of supporting core systems, this

section proposes a new module for this collection, the Device Hub. This System provides a

central messaging infrastructure that bundles and organizes all network traffic between

interacting systems and harmonizes the heterogeneous protocol landscape. Hence, it solves a

common challenge in an IoT infrastructure, which is incompatibility between different devices.

The existing Arrowhead approach to this, is to deploy a translation system, which mediates

these differences when necessary. The first use of Eclipse Hono in the Arrowhead context is

therefore as a sort of translation system that allows translation between different protocols that

are used within an Arrowhead cloud.

3.3.2.2 Eclipse Hono as an Arrowhead Device Hub

Hono’s nature as a Device Hub in huge IoT deployments may also benefit a local cloud, as it

provides a quality of service level in system interaction, which especially constrained devices

cannot deliver. Also, the broker infrastructure benefits traffic efficiency, as it avoids polling

and therefore reduces traffic load and frees up processing power on the device side.

3.3.2.3 Eclipse hawkBit as Arrowhead Configuration System

The Arrowhead Framework description proposes a so-called configuration system, to monitor

the current device configuration and distribute changes [7]. These changes comprise new

software rollouts of the actual application running on the device or the underlying operating

system, and other configuration files.

As future Industrial IoT scenarios potentially involve hundreds of thousands of devices, each

of which requires updates over time, a reliable and scalable solution is indispensable. Moreover,

software or configuration updates might need to be distributed quickly, as they are intended to

fix security breaches or bugs in highly critical components. If not eliminated in a short amount

of time, these security risks potentially result in high costs. Hence, a configuration system

solution would also need to force updates on certain devices as fast as possible.

Eclipse hawkBit provides a comprehensive service to control and monitor software rollouts and

device configuration. For instance, that includes cascading software distribution, where the user

organizes updates in groups of devices. Each group update gets triggered successively,

depending on the successful deployment of the previous group. HawkBit also allows the

integration of Content Delivery Networks (CDNs) to store high volumes of large files

separately. This makes it a straightforward fit to handle the named requirements in the

beginning.

 Page 19 (79)

3.3.2.4 A digital twin system based on Eclipse Ditto

In a manufacturing plant with a large number of devices on the shop floor, it might be beneficial

to employ a so-called digital twin system. A digital twin represents all relevant characteristics

of a physical instance in the real world. For example, a hypothetical weather station would

encapsulate attributes, such as temperature, humidity, or wind speed. A potentially participating

system, interested in those data, could then request the specified information and receive the

current state. However, the digital twin system does not provide historic data, as this is not part

of its functional scope.

Eclipse Ditto provides digital twin management capabilities as described above. It relies on the

Akka framework and is structured in several microservices, interacting with each other and

renders itself to a perfect fit as a digital twin system within the Arrowhead framework.

3.4 Status of Work
At the time of this report Bosch.IO GmbH has performed the initial analysis for all four targeted

framework integrations and realized the implementations of Eclipse hawkBit as Configuration

System. Additionally, also an initial feasibility study of Eclipse Hono as translation system was

performed. Both results are discussed in what follows.

3.4.1 Eclipse hawkBit as Configuration System
As described previously, Eclipse hawkBit provides a comprehensive service to control and

monitor software rollouts and device configuration.

The internal architecture of hawkBit consists of the following components.

Artifacts and metadata repository: Here, hawkBit stores the software artifacts, such as

binaries or configuration files.

Direct Device Integration (DDI) API: The DDI is hawkBit’s plain REST API, which

enables devices to check for new updates. As it only allows for a polling based re- trieval of

new artifacts, the user can adjust the frequency the devices should ask for updates. However,

as polling, compared to pushing new updates, is highly inefficient, hawkBit provides the DMF

API.

Device Management Federation (DMF) API: The DMF API is based on a RabbitMQ

message broker instance. This API does not allow devices to connect directly, but enables

developers to implement custom solutions, to integrate more protocols, e.g. LWM2M, which

then provide device endpoints. Since RabbitMQ consists of an AMQP 0.9.1 messaging

network, the DMF provides publish/subscribe capabilities, and hence allows efficient update

procedures. However, the DMF not only supports software and configuration rollouts, but also

some device management options, such as device creation and deletion.

Management API: The management REST API allows full control over hawkBit’s con-

figuration parameters. This includes the creation, deletion and modification of devices, software

artifacts, rollout configurations and more.

Management UI: The management UI provides graphical elements for a user to interact with

the management API. However, it could easily be replaced by a new custom UI, allowing the

creation of an Arrowhead wide management UI.

One has the option to modify hawkBit’s code base or expand the system as a whole by a

wrapper. There remains a high risk that internal changes in the source code might be destroyed

by or interfere with future releases. Also, an integration of the necessary changes into hawkBit’s

code in this case is not sensible, as it would narrow the applicable use cases and therefore lose

its ability to be used outside an Arrowhead local cloud. Moreover, as hawkBit explicitly

 Page 20 (79)

provides an interface for third party implementations to integrate new protocols and

mechanisms — the DMF API — the chosen solution features a wrapper-based approach.

To integrate hawkBit into the Arrowhead ecosystem, it has to be discoverable for all devices.

Hence, a system administrator has to create entries in the service registry and the orchestration

system. However, the wrapper first has to register at the service registry.

3.4.1.1 Wrapper architecture

Internally, the wrapper implementation is divided in three different Vert.x verticles, as depicted

in Figure 3.5. The first one interacts with the RabbitMQ endpoint, which involves receiving

and sending messages that either contain software update details sent to the devices or

confirmation messages sent to hawkBit after an update went successful. Also, new devices,

connecting for the first time with the wrapper, are registered in hawkBit, a feature that is

provided by the DMF but not the DDI. The second verticle manages the device connection,

currently via Websockets. However, this part of the application could easily be exchanged with

any other protocol implementation, such as MQTT. In this scenario Websockets are chosen due

to the fact that no broker infrastructure is needed and because the current Arrowhead

implementation uses HTTP web requests in its services. The third verticle is responsible for all

necessary interaction with the Arrowhead core systems, namely the authorization system and

the service registry. This is necessary to register the wrapper as a service, as it would not be

discoverable otherwise. Additionally, the wrapper periodically fetches the public authentication

key from the authorization system, which is needed to verify the JSON Web Token, issued to

the device during orchestration. The authentication flow is described in more detail below.

The verticles internally communicate using the Vert.x EventBus, which guarantees a high

degree of decoupling, which is favorable when it comes to the integration of other protocol

implementations for the second verticle, as mentioned earlier. Moreover, it separates all

connector implementations from each other, making them all interchangeable, for instance in

the case of an API change, either of the mandatory core systems or the AMQP messaging

network. As RabbitMQ currently relies on AMQP 0.9.1, it is likely to upgrade to AMQP 1.0 in

the future, which distinguishes itself drastically from its predecessor. In addition to the

EventBus, the verticles very rarely use shared resources, except for the keystore which holds

public and private key of the configuration system and is needed to decrypt the JWT payload.

However, as different verticles run on different event queue threads, these shared resources

need to be protected by locks.

 Page 21 (79)

Figure 3.5 Architecture of the proposed configuration system. Three Vert.x verticles of a

wrapper module communicate with the DMF API of Eclipse hawkBit (1), the Arrowhead

mandatory core systems (2), and the respective devices (3).

3.4.1.2 Operating principle

Figure 3.6 depicts the interaction between all participants being a new device, the Arrowhead

mandatory core services, and the configuration system wrapper together with a hawkbit

instance. In the first step, the configuration system wrapper, as mentioned above, registers at

the service registry. For this to be possible, the wrapper needs its own client certificate, just as

any other system interacting with the core services. The client certificate is signed by the private

key of the local cloud root certificate. Also, to verify the correctness of the server certificate the

service registry requires a copy of the root certificate in a truststore. These steps need to be

performed upfront by the local cloud administrator. However, as there might be hundreds of

thousands of devices involved, an automated process, which for example requires local

presence in a production facility, is advisable.

In addition to the setup on the Arrowhead side, the AMQP 0.9.1 connection module initializes

a connection to the RabitMQ broker and registers a queue and an exchange. In AMQP 0.9.1,

exchanges are used to publish message, whereas queues allow subscribing to incoming

messages. Internally, queues are then linked to exchanges, which allows routing of messages

to different queues. In this scenario however, one exchange is bound to one queue.

After the bootstrapping process completed, the system administrator has to define orchestration

and authorization rules, mapping devices to the configuration system and giving them

permission to request configuration updates. Subsequently, devices can request configuration

orchestration at the orchestration system, which will provide them with the correct protocol,

system address, port, service URI and a JSON Web Token (JWT) [22]. This nested JWT, allows

the service consumer to authorize at a service producer.

Subsequently to the orchestration, the consumer system attempts to open a Websocket

connection to the configuration wrapper. During the Websocket handshake, the config- uration

system then checks the JWT using its own private key for decryption and the authorization

system public key for validation. The exact validation, as performed by the configuration

system is depicted in Listing 3.1. The transmitted token is validated, and the included claims

are extracted. It is also important to note that the validation operation has to be performed by a

separate Vert.x background thread, as it otherwise might block the event loop. Therefore, the

Vert.x executeBlocking API is called.

 Page 22 (79)

Figure 3.6 Interaction between a potential device requesting configuration updates, the

Arrowhead core systems, and a configuration system based on hawkbit.

 Page 23 (79)

Listing 3.1 Arrowhead token validation implementation.

Afterwards, the connection gets stored in a hash map, using the consumer system ID as key.

The system ID is encapsulated in the JWT payload claims. In case the consumer connects for

the first time, the wrapper creates a new device in hawkBit. This is legitimate, as after successful

orchestration and authentication, the configuration system rightly assumes that the consumer is

authorized to receive configuration updates. Now, the consumer device permanently is

connected with the configuration wrapper, ready to receive software updates. This illustrates

the necessity of a reactive programming approach, as it would be unmaintainable to keep a

thread for each connection, with a large number of devices connected permanently.

After the local cloud administrator initiates a software update for a system or a group of

systems, hawkBit publishes messages into the RabbitMQ messaging network. The con-

figuration wrapper, in particular the AMQP connector verticle, which is subscribed to these

notifications, then opens the messages and categorizes them, depending on their topic header.

 Page 24 (79)

Afterwards, the payload is forwarded to the WebSocket verticle using the event bus. However,

it is important that the message reception is not immediately acknowledged to the RabbitMQ

broker, but only after the device successfully received it, which is why the AMQP verticle waits

for a response on the event bus. Otherwise, the wrapper implementation could not guarantee

the successful delivery, as the message would be lost, and the update could not be triggered.

Upon successful reception of the update request message, the WebSocket verticle, which is

listening on the event bus for incoming messages from the AMQP verticle, extracts the recipient

system ID from the message body. In case the ID does not exist in the hash map of held

WebSocket connections or the transmission fails, the verticle reports back the error through the

event bus. Otherwise the device gets notified about the new notification. However, hawkBit

does not just deliver update notifications and provides software artifacts, but also tracks the

rollout state. This implicates that the device needs to provide feedback to hawkBit. Hence, the

wrapper implementation also comprises a back channel for the systems that notify hawkBit

upon successful or failed software update. This information is crucial for the system

administrator and also features hawkBit’s cascading rollouts mechanism, which relies on the

information of active rollout processes to potentially stop further updates and request manual

intervention.

Table 2.2 lists all available hawkBit services usable via the DMF API. The upper part of the

table presents all requests directed at hawkBit, the lower part views all commands sent by

hawkBit to a certain device. The wrapper supports a subset of these interactions, which are

highlighted in bold letters. For a fully functional and production-ready implementation,

eventually all services would need to be connected. However, for a first proof of concept, the

implemented subset is sufficient, as it covers the basic functionality necessary to integrate new

devices, guarantee they are authorized, and perform a complete software rollout, including the

processing of status updates coming from the devices. It is planned to add the other commands

later.

Using the UPDATE ACTION STATUS message, the device continually informs hawkBit

about the update process. Status changes occur, for instance, once the download of a software

artifact started, finished, or after the installation completed successfully. The device

autonomously decides, which update information to provide, as not all intermediate steps might

deem necessary to transmit. However, the more fine-grained the reporting and error tracing are,

the easier becomes the troubleshooting.

To guarantee that the list of held WebSocket connections within the hash map always matches

the set of real connections, a registered callback function block is responsible to remove inactive

systems from the data structure. This piece of code is invoked by the underlying WebSocket

library after the keepalive timeout was exceeded. This mechanism is not to be confused with

the optional TCP keepalive feature. WebSocket keepalive messages guarantee that both sides

— client and server — are still available by sending a ping message that has to be acknowledged

by the other side with a pong message in a certain amount of time. Also, a system might attempt

to connect to the configuration wrapper more than once, which is technically possible, but

would be absolutely inconsistent in the Arrowhead Framework, as one system can request

exactly one configuration. In this case, the controller rejects the WebSocket handshake, as there

is no reason to connect for a second time.

3.4.1.3 Evaluation

The described implementation basically fulfills the entire spectrum of functionality of an

Arrowhead configuration system. It allows creating automated software and configuration

 Page 25 (79)

rollouts and monitoring their success. Thanks to the supplementary wrapper implementation, it

also seamlessly integrates into Arrowhead’s orchestration and authorization mechanism.

However, the hawkBit API provides more endpoints, which have to be implemented too, if

usage scenarios require those.

Due to its modular architecture, the wrapper implementation allows for the replacement of each

of the three microservices. The endpoint component, handling all interaction with the devices,

currently supports WebSocket connections, as there is no intermediary broker infrastructure

necessary, and WebSockets allow bidirectional communication. Also, Vert.x provides a native

and non-blocking WebSocket API. A future application might potentially support a different

protocol, such as LWM2M, which is based on CoAP and specifically designed for device

management and configuration purposes.

Table 3.2 Provided hawkBit services via the DMF API. The wrapper implementation supports

a subset which is highlighted in bold letters.

3.4.2 Eclipse Hono as Translation System
Due to Hono’s diverse protocol adapters, it might also fit as foundation for an Arrowhead

translation system. The translation system offers translation capabilities to connect systems,

which otherwise could not communicate with each other, due to differing supported application

layer protocols. In the best case the translation happens transparent for the involved services.

 Page 26 (79)

The applicability of Hono as Translation system was evaluated with Proof of Concept

implementations and analyzed with respect to its overall fit.

3.4.2.1 Functionality of a Hono-based translation system

The Arrowhead translation system functions as an intermediary and transient layer between two

communication partners, the producer and the consumer. To let Hono perform this role, a

mirroring service could connect to the northbound API to which normally business applications

use to interact with the devices through Hono. This architecture with the mirroring service

(translation engine) is depicted in Figure 3.7. Every incoming message would then need to be

unwrapped and transmitted to the correct receiver by this service. The producer and consumer

could easily connect to the protocol adapters and the mirroring wrapper module would forward

every message to the correct receiver.

Figure 3.7 Architecture concept of a Hono based translation system.

Figure 3.8 depicts the entire communication process. The consuming service (App System A)

requests orchestration at the orchestration system. As the service registry stores metadata, such

as which protocol a service uses, the orchestrator then determines whether a translation is

necessary. After checking with the service registry and the authorization system, to ensure the

consumer exists and is authorized to consume the producing service (App System B), the

orchestrator requests a translation process at the translator system. Internally, Hono registers

two new devices and creates credentials for them, which it hands over to the orchestrator. In

order to enable the connection between the orchestrator and the translation system, the existing

orchestrator reference implementation would need to be modified accordingly, as it is not aware

about translation operations yet. In the initial Arrowhead definition [7], the translation system

provides an API, which allows to instantiate a new transient translation unit. This translation

unit then temporarily organizes a particular translation procedure between two systems and

vanishes afterwards. As Hono does not fit the requirement of being deployed for each

translation session, the wrapper rather provides the possibility to configure a translation flow

between two participants instead. This configuration would involve the creation of two devices

and their credentials. Here, the device abstractions in the Hono context are repurposed to allow

Arrowhead systems to connect.

 Page 27 (79)

Figure 3.8 Translation system communication pattern

After the setup completed, the orchestrator returns the orchestration result to the consumer

system, including the related credentials. The consuming service then connects to the correct

protocol adapter, using its Hono device credentials. The translator, acting as a proxy, consumes

the producing service and forwards the results to the actual consumer.

3.4.2.2 Evaluation

Looking at the described interaction flows, it becomes clear that Hono does not fit as an ideal

translation system foundation, because it is not capable of transparently translating between

publish/subscribe and request/response based protocols. Figure 3.9 shows the four different use

cases concerning the translation between HTTP (request/reponse) and MQTT

(publish/subscribe), where red paths are indicating systemic shortcomings.

 Page 28 (79)

Figure 3.9 Hono’s translation capabilities come with systemic flaws in regard to protocol

translation between publish-subscribe and request-reponse based protocols.

Figure 3.9a depicts a HTTP system consuming a MQTT service, expecting a synchronous

response. In Figure 3.9a, in contrast, App System A does not expect a response from the

producer. Both use cases generally could be performed by a Hono based translator. However,

App System B would need to connect directly to Hono’s internal MQTT API, which might not

be desirable for use cases without any translation system. This is due to the fact that Hono does

not provide the possibility to use an external MQTT broker, subscribe to a specific topic, and

forward the incoming messages.

Figure 3.9c and Figure 3.9d present the reverse use case. In this scenario, the MQTT consumer

connects to a broker, either just by subscribing to a topic or additionally publishing a message

to another topic. The mirroring service then retransmits the message to the producer and waits

for the synchronous response, which it publishes using the broker. The MQTT consumer then

receives the response. However, Hono is not capable of sending HTTP requests over its

protocol adapters as it lacks an HTTP client implementation. Hence, the producer would need

to send a request, indicating over a Hono-specific TTL- header that it wants to wait for a

response. However, this fundamentally ignores the consumer/producer concept where the

consumer initiates the transmission.

Both presented cases — MQTT to HTTP and vice versa — reveal profound structural

drawbacks in a translator implementation. The absence of client implementations only allows

for very specific use cases, where no separate MQTT broker infrastructure is involved and an

HTTP producer system connects to the translator in advance, waiting for potential responses.

Moreover, Hono’s specific terminology restricts the potential applications or at least

complicates usability. For instance, if a system sends data via MQTT it has to comply with

Hono’s definite topic structure, starting with telemetry/.... Even though this is primarily a

convenience argument, it also complicates the replacement of a different translator system, as

application systems have to adapt to these specifics and therefore have be aware of the ongoing

 Page 29 (79)

translation which should be transparent to the involved endpoints to create a higher degree of

interoperability.

Moreover, a Hono based translation system only fulfills the Arrowhead requirements in regard

to authentication and authorization, if one chooses the client certificate-based authentication in

combination with the auto provisioning feature of Hono. The credentials-based authentication

also supported in Hono would require an intermediate step to register each participant and

distribute the credentials.

Additionally, as described above, the translation system needs to maintain a participant

mapping for as long as the translation procedure continues. As there might arise situations with

one participant being involved in more than one translation flow, the translation system also

needs to be capable of distinguishing between these flows. This could either be done by linking

each flow with a unique procedure number, or by generating two new devices for each

translation. The latter option does not require the communicating systems to be aware of the

translation process, but rather provides a transparent API, where the consuming system cannot

distinguish between a translated and an untranslated consumption, as it does not need to include

the procedure number. As this simplifies the entire process, this would be the preferred

approach.

Considering the above-mentioned points, Hono does offer translation capabilities, and certainly

helps to connect devices in a heterogeneous protocol landscape but is not compliant to the

Arrowhead translation system definition. So this work will not further enlarged in favor of

other, more suitable approaches (e.g. the Translator system presented in Chapter 15).

4 Eclipse Kura and Kapua
This chapter illustrates the integration of Eclipse Kura and Kapua with the Arrowhead

Framework. The two projects have been conceived, developed and promoted respectively by

Eurotech and Eurotech/Red Hat in the context of the Eclipse Foundation IoT Initiative, where

Eurotech is working with Cloudera, Red Hat, and others to develop key IoT runtimes and other

enabling technologies that will allow the creation of end-to-end integrated and open IoT

architectures.

Eclipse Kura™ is an extensible open source IoT Edge Framework based on Java/OSGi. Kura

offers API access to the hardware interfaces of IoT Gateways (serial ports, GPS, watchdog,

GPIOs, I2C, etc.). It features ready-to-use field protocols (including Modbus, OPC-UA, S7),

an application container, and a web-based visual data flow programming to acquire data from

the field, process it at the edge, and publish it to leading IoT Cloud Platforms through MQTT

connectivity.

Eclipse Kapua™ is a modular IoT cloud platform to manage and integrate devices and their

data. A solid integrated foundation of IoT services for any IoT application.

The projects represent the two main counter parts of the IoT integration solution that is adopted

in use case 8.3 “SoS engineering of IoT edge devices (Condition Monitoring)”

and use case 8.4 “SoS engineering of IoT edge devices (Smart Home)”.

4.1 Rationale for Integration
The integration of Eclipse Kura and Kapua with the Arrowhead Framework will introduce fleet-

level functionalities that will allow to monitor, from a centralized location, a set of AF Local

Clouds remotely deployed and running on the field. Moreover, Kura will improve the

capabilities of the AF Local Cloud in terms of data collection, edge computing and data delivery

to existing cloud platforms.

 Page 30 (79)

4.2 Technical Details
The envisioned architecture has been organized in two different levels, according to the two

main potential usage of the Arrowhead Framework. The first level refers to the edge, where a

multiservice gateway or an industrial edge controller hosts both Eclipse Kura and the AF-based

Local Cloud. While the second level refers to the AF-based Enterprise Level Cloud that runs

on the enterprise side together with Eclipse Kapua.

The integration of Eclipse Kura with the Local Cloud will extend the Local Cloud capabilities

in terms of data collection, data processing and connectivity. Indeed, Kura supports several

field protocols, data collection mechanisms and the hardware abstraction layer simplifies the

process of extending them, supporting new protocols, etc. Eclipse Kura is also a programming

environment that wraps the complexity of low-level device management with high level

constructs, providing application-oriented abstraction levels that translate in services intended

to simplify and speed-up the software development.

Eclipse Kura represents the edge-side enabler for the fleet management and provides an

efficient and easy way to collect data from the Local Cloud, process data in the Local Cloud

and, only when it is required, to send raw or processed data to the cloud or a data center using

a MQTT connection, natively optimized for telemetry and command/control.

Eclipse Kapua is autonomously capable to provide the complementary functionalities required

to monitor the remote fleet of Local Clouds. An efficient and scalable MQTT broker collects

information from the fleet, a rule engine process it and a non-relational database, optimized for

time series, can efficiently store it, making it available for added-value services. Although

Kapua provides this possibility autonomously, without the need of the Arrowhead Framework,

it is extremely more valuable to integrate it with the framework and publish/consume AF

services. Indeed, thanks to the integration, the interoperability level increases, the number of

accessible services increases, it is possible to take advantage of the service-oriented architecture

of the framework and simplify the design and development of domain-specific and, in

particular, of cross-domain applications

A Fleet Monitoring Dashboard is an example of this kind of application: it extends Eclipse

Kapua to display Local Cloud specific information that allows a single operator to monitor a

fleet of Local Clouds deployed on the edge, independently from the geographical location,

application context, specific business logics, etc. The Fleet Monitoring Dashboard adopts a

Service Oriented architecture and can collect the information from the fleet of Local Clouds

both from Eclipse Kapua or through the services published by Eclipse Kapua on the Enterprise

Level AF Cloud. Following this approach, it will be also possible to develop separate

applications for specialized operators (e.g. the installer or the maintenance operator) or for the

end-user.

 Page 31 (79)

Figure 4.1 Integration of Eclipse Kura and Kapua.

4.3 Integration in Arrowhead Framework

The integration of Eclipse Kura will be based on the internal service-oriented abstraction layer

available in Kura itself, a layer that allows to hide all the low-level technical details regarding

hardware functionalities, data acquisition, data processing, connectivity, etc. Kura provides a

Java/OSGi-based container for M2M applications running in service gateways and is

specifically conceived for the edge computing and IoT domains. Thanks to a service-oriented

architecture, Kura provides or aggregates open source implementations for the most common

services needed by M2M applications, implemented as configurable OSGi Declarative Service

exposing service API and raising events.

Kura includes the following set of services:

• I/O Services

• Data Services

• Cloud Services

• Configuration Service

• Remote Management

• Networking

• Watchdog Service

• Web administration interface

The integration will be based on the extension of the data publishing service, data acquisition

service and control service, that will provide specific REST APIs and will be published in the

AF as AF services. Data acquisition services are intended for data acquisition from the field.

Data publishing service is responsible for the information stored at cloud level. This service

receives data from the data acquisition services and publish them on a specific repository (e.g.

a cloud platform, a remote database, etc.). The service abstracts from the specific

communication protocol adopted to connect to the remote repository. Finally, the control

Eclipse Kura Eclipse Kapua
Local Cloud Info

Enterprise
Level Cloud

Fleet monitoring
dashboard

Local Cloud
AF InterfaceAF Interface

Eclipse Kura
Local Cloud

AF Interface

Eclipse Kura
Local Cloud

AF Interface

Eclipse Kura
Local Cloud

AF Interface

Eclipse Kura
Local Cloud

AF Interface

Eclipse Kura
Local Cloud

AF Interface

Fleet of Local Clouds

 Page 32 (79)

service is responsible for the actuation of commands on Kapua side and vice versa, from Kapua

to Kura.

With a similar approach, the monitoring services will be provided in the form of a REST API

and will be published in the AF as AF services.

4.4 Status of Work
The definition of the overall architecture clarifying the role of the Arrowhead Framework, of

Eclipse Kura and Kapua, their integration and their use in the use cases has been concluded.

The definition of the integration approach between the Arrowhead Framework and Eclipse

Kura/Kapua, considering their different roles, functionalities and internal architecture has been

concluded.

The design and development of the integration between the Arrowhead Framework, Eclipse

Kura and Kapua have been just started and are ongoing at the time of publication of this

deliverable.

5 Onboarding Procedure

5.1 Rationale for Integration
The onboarding procedure shown in Figure 5.1Figure 5.1 is needed when a new device

produced by any vendor (e.g. Siemens, Infineon, Bosch, etc.) wants to interact with the

Arrowhead local cloud. To assure that the local cloud is not compromised upon the arrival of

this new device, it is important to establish a chain of trust from the new hardware device,

containing a secure element (e.g. TPM), to its hosted application systems and their services.

Thus, the onboarding procedure makes possible that devices, systems and services are

authenticated and authorized to connect to the Arrowhead local cloud.

Figure 5.1: Onboarding Procedure

5.2 Technical Details
As shown in Figure 5.1, the onboarding procedure involves a number of Arrowhead core

systems. In the following we provide an update of Arrowhead support core systems involved

in the onboarding procedure, which are developed by FB.

 Page 33 (79)

5.2.1 Onboarding Controller System
The Onboarding Controller is a system at the edge of the Arrowhead local cloud, which is not

part of the local cloud chain of trust. Thus, the Onboarding Controller system (i) is the first

entry point to the local cloud, e.g. accepts all devices to connect via the Onboarding service,

(ii) has a certificate for the https communication with the device, and (iii) (optionally) the

certificate is provided by a public CA (e.g. Verisign). On success, the system provides: (i) an

Arrowhead issued “onboarding" certificate, and (ii) the endpoints of the DeviceRegistry,

SystemRegistry, ServiceRegistry and Orchestrator systems. As shown in Figure 5.2, the

Onboarding Controller system consumes the ServiceDiscovery, Orchestration,

AuthorizationControl and SignCertificate services and provides the Onboarding service.

Figure 5.2: Onboarding Controller System

Figure 5.3 shows the use cases that represent the actors and their interaction with the

Onboarding Controller system. The actors can be devices with different credentials: (i) device

with a preloaded Arrowhead certificate, (ii) device with a manufacturer certificate, and (iii)

device with a shared secret.

 Page 34 (79)

Figure 5.3: Onboarding Controller Use Cases

5.2.2 DeviceRegistry System
The DeviceRegistry system is used to provide a local cloud storage holding the information on

which devices are registered within a local cloud, meta-data of these registered devices,

including a list of the systems that are deployed in each of them. The DeviceRegistry system

holds for the Arrowhead local cloud unique device identities. The DeviceRegistry system shall

be accessible using different SOA protocols (e.g. REST, CoAP, MQTT). As shown in Figure

5.4, the DeviceRegistry system consumes the three mandatory core services of Arrowhead, the

SignCertificate service provided by CA and provides the DeviceDiscovery service.

Figure 5.4: DeviceRegistry System

Figure 5.5 shows the use cases that represent the actors and their interaction with

DeviceRegistry.

 Page 35 (79)

Figure 5.5 DeviceRegistry Use Cases

5.2.3 SystemRegistry System
The SystemRegistry system is used to provide a local cloud storage holding the information on

which systems are registered within a local cloud, meta-data of these registered systems and

the services these systems are designed to consume. The SystemRegistry holds for the

Arrowhead local cloud unique system identities for systems deployed within it. As shown in

Figure 5.6, the SystemRegistry system consumes the three mandatory core services of

Arrowhead, the SignCertificate service produced by CA, and produces the SystemDiscovery

service.

Figure 5.6: SystemRegistry System

Figure 5.7 shows the use cases that represent the actors and their interaction with

SystemRegistry.

 Page 36 (79)

Figure 5.7: SystemRegistry Use Cases

The above mentioned registries, use a basic three-tier architecture: (i) The presentation tier

named *Controller.java, which transforms the view into domain specific objects and vice versa.

Each RegistryController contains three functions: query, which searches for an entity with e.g.

a specific name (common name as shown in its certificate), register, which stores an entity in

the database, and unregister, which removes an entity from the database. (ii) The application

tier is named *Service.java, which is responsible for any business logic and extensive

validation. (iii) The data tier is taken from the Arrowhead common project and is named

*Repository.java. The Repository classes are generic interfaces using Spring Boot Data for

implementation, They allow to deal with any entity in the Arrowhead code. Arrowhead uses

OpenAPI (formerly known as swagger) to enrich the documentation of its REST methods.

5.3 Integration in Arrowhead Framework
The sequence diagram in Figure 5.8 shows the interaction of a new device with the Arrowhead

local cloud during the onboarding procedure.

 Page 37 (79)

Figure 5.8: Onboarding Procedure Sequence Diagram

5.4 Status of Work
All systems involved in the Onboarding Procedure are released systems integrated in the

Arrowhead GitHub master branch: https://github.com/arrowhead-f/core-java/tree/master

6 Monitoring and Standard Compliance Verification

6.1 Rationale for Integration
Monitoring and Standard Compliance Verification (MSCV) is used to monitor and verify if a

new device, including its software systems and hosting services, that wants to interact with the

Arrowhead local cloud fulfills the requirements of a specific standard.

6.2 Technical Details
The MSCV system shown in Figure 6.1 will perform compliance verification based on a set of

measurable indicator points, which will be extracted from international standards (e.g.,

IEC62443-3, ISO27002, etc). The result of standard compliance will decide if the

device/system/service can continue with the onboarding procedure in order to register devices

in DeviceRegistry, systems in SystemRegistry and services in ServiceRegistry.

https://github.com/arrowhead-f/core-java/tree/master

 Page 38 (79)

Figure 6.1 MSCV System

6.3 Integration in Arrowhead Framework
The MSCV system will be invoked during the Onboarding procedure as shown in Figure 6.2.

Figure 6.2 MSCV system integrated in Arrowhead local cloud

6.4 Status of Work
A first prototype of the MSCV system is already available in Arrowhead GitHub.

Currently, we are working to integrate it with WP9 use case “Linking building simulation to a

physical building in real-time” and to provide new features such as, standard compliance

verification in run-time.

7 Vital-IoT
Vital-IoT is a smart city platform that enables the integration, orchestration and visualization

of IoT services’ data streams from multiple systems. It provides a set of data models and

interfaces enabling collection and annotation of information from diverse systems in a simple

developer-friendly format and in a way that ensures their unified and interoperable

representation. It also provides a management environment, which permits unified supervision

of diverse IoT device systems and data streams from a single entry point.

7.1 Rationale for Integration
In the primary version of Vital-IoT, to allow heterogeneous systems to be connected, a set of

specifications called PlatformProvider Interface (PPI) were used, which defined the interface

 Page 39 (79)

between the Vital-IoT platform and third-party IoT systems. An implementation of the PPI is

all that was required by IoT platform providers who wish to make their systems compliant with

Vital-IoT. PPIs could be also used to provide access to individual (IoT-related) data sources

and datasets.

The PPI has been defined as a set of RESTful web services that are marked as either mandatory

or optional. The classification of the PPI services into optional and mandatory minimizes the

effort required from IoT systems providers to integrate their systems into Vital-IoT while

offering a way of exposing information that may be needed in specific scenarios. The PPI is

registered to the Vital-IoT platform to allow it to retrieve:

● Information about the IoT systems (e.g. their status)

● Information about the services that an IoT system exposes (e.g. how to access them)

● Information about the sensors that an IoT system manages (e.g. what they observe)

● Observations made by the sensors that an IoT system manages

Although PPI facilitates the integration of new services, the process of adding new services still

was a very complicated operation that was not achievable without the intervention of Vital-IoT

admins and a set of manual installation and configurations.

However, using Arrowhead framework and its services, it is possible to discard many steps of

the manual integration of new services and facilitate the process of adding them considerably.

Considering the mentioned advantages, we have completely discarded the PPI service form

Vital-IoT, and inserted an Arrowhead interfacing module in Vital-IoT’s dashboard to

communicate with Arrowhead platform services to obtain information regarding required

services and measurement systems conveniently. Using this information, it is possible to

communicate with the provider system without any considerable complexity.

7.2 Technical Details
Vital-IoT is composed of the functional modules described in Figure 7.1.

The User Application of the Vital-IoT dashboard is made of three main modules. The first one

is the “User Authentication” module, composed of the user registration page and user login

page. The second one, the “Arrowhead Interfacing” module, is dedicated to communicating

with the Arrowhead orchestration service in order to provide the end-user with all of the

services he is looking for. And finally, the “Data Visualization” module, which shows the

measurement data provided by the sensors in the requested time window.

In the back-end part, we have a Flask application providing services for user authentication,

user registration, service configuration management and providing data for the visualization.

Moreover, the Flask module offers resources to calculate statistical measures such as mean,

minimum and maximum measured values.

Another essential part is the “Data Collector”. Mostly, it acts as a listener, subscribing to the

MQTT topics and collecting the upcoming data. After that, such values are passed to a data

validator to ensure compatibility with Vital-IoT’s data format, in order to prevent errors in the

data visualization phase. In the end, the data is saved in the MongoDB database.

 Page 40 (79)

We set up a Mosquitto broker service, responsible for gathering data from all of the data

providers, without having them to configure their own broker service. Nevertheless, Vital-IoT

is also capable of collecting data from other external MQTT brokers.

Figure 7.1 Vital-IoT functional topology

7.3 Integration in Arrowhead Framework
In order to make the Vital-IoT system compatible with Arrowhead Tools, it was necessary to

perform some modifications in the architecture and functionalities of our Smart City platform.

Figure 7.2 shows the implemented modification on the Vital-IoT platform.

 Page 41 (79)

Figure 7.2 Vital-IoT integration with the Arrowhead Architecture

First of all, the measurement service (which in our case are the sensors), must be registered in

the list of available providers. This is achieved through a POST request using Arrowhead's

service registry, using the following URL:

http://{registeration_service_address}/serviceregistry/register

Furthermore, using the mentioned POST method, the service provider will also be registered in

the list of providers if it is not registered before. However, at this stage of the process, besides

the usual main information for registering a provider, it is necessary to include information

which is crucial for initializing the communication and collecting information from the sensors

(such as the broker address, the broker port, the topic, etc.).

On the other hand, we may have different sensors, which probably use diverse data structures

to convey their information. Thus, it is necessary to have a common understanding of the

transferred data between the provider and the consumer. To achieve this, we have suggested

creating a dictionary to declare the necessary instructions for having a common understanding

between the provider and the consumer. Moreover, such information is critical for the

visualization purpose. e.g, which keys refer to timestamp, measured values, measurement units,

etc.

Looking at the “metadata” field, here is where we have decided to insert the information

regarding the connection properties of the services and necessary information for the

visualization purpose.

In the “providerSystem” field, the main key is the “systemName” which in our concept should

be equal to a group of sensors that we consider a system.

The other important field is “serviceDefinition” that is the key element for the orchestration

phase and discovering the services. As we mentioned previously, it should follow the form of

 Page 42 (79)

“vital_[measuredValue]_sensor” to assure consistency with the Vital-IoT and for comparison

purposes while having data from various systems e.g. temperature in different cities.

Likewise, we need to register our consumer system that is the Vital-IoT, using the following

URL:

http://{registeration_service_address}/serviceregistry/register

This step is mandatory since the information of the registered consumer must be used for the

authorization process. In this phase, we specify which consumer can access the information of

which providers and services. In our case, we authorize the Vital-IoT system to access the

measurement services available from our sensors. This is done using the following URL:

http://{registeration_service_address}/authorization/mgmt/intracloud

It is important to make sure that the “consumerSystem”, the “providerSystem” and the

“serviceDefinition” are the same systems we have specified in our message body.

The Vital-IoT starts the orchestration process using a POST request and by specifying what

kind of service it is looking for, using the following URL:

http://{orchestration_service_address}/orchestrator/orchestration

This leads to receiving the response message with the list of available requested services. The

user selects the services he is looking for and saves the configuration information.

Following this action, the configuration information (the whole data received from the

orchestration service) is sent to the backend and saved in the configuration collection alongside

with the configuration data of the other service providers. In order to achieve this, a POST

request must be submitted to the backend with the following URL:

http://{vital_iot_service_address}/config-update

Meanwhile, the backend starts the process of subscription to the broker with the topic

mentioned in the configuration received from the frontend.

The flow of the data received from the broker is saved in the database using the dictionary

provided in the system registry phase and the adapted data will be sent to the frontend to be

visualized when requested.

7.4 Status of Work

Available Features Present Gaps

- Establishment of direct

communication between Arrowhead

Framework and Vital-IoT dashboard

- Integration and visualization of data

from diverse sensor types and

sources.

- Unified data storage solution with an

interface towards run-time systems

- Integration of Edge Computing and

pre-processing of data collected from

- Scalability and remote installation

and control of the Edge Computing

side of the architecture

- Improvements of data visualization

- Dashboard personalization based on

user preferences

 Page 43 (79)

different devices and sensors

- Configuration and measurement data

validation

- Providing statistical data

measurements and comparison of

values where possible

- Presence of internal MQTT broker to

facilitate data transfer of external

measurement devices

8 IKERLAN Tool Adapter

8.1 Rationale for Integration
Arrowhead standard architecture is shown in Figure 8.1. To run this architecture all involved

tools (Tool1, Tool2, Tool3) must call Arrowhead framework for registering and getting IP

addresses and Ports of other tools. This implies that (1) in every tool, the program code must

include the logic of this management and in addition to this, (2) each tool may be programmed

in a different programming language, so the same logic must be programmed several times in

different languages.

Figure 8.1 AH standard architecture

As requested from use cases of Fagor Automation and Fagor Arrasate, and with the goal of

reaching to a single solution that (1) is independent from the technology in which the tool is

developed and (2) hides to the tool some of the complexity of the interaction with Arrowhead

framework, a middleware layer shown in Figure 8.2 is proposed.

 Page 44 (79)

Figure 8.2: middleware layer

Following sections explain the different components of the middleware layer in detail.

8.2 Technical Details
The middleware is composed by Software Components and Configuration Files.

8.2.1 Software components
1. Registrator API Rest. This is a Java REST WebService (developed with Spring

https://spring.io/) implementing the following services:

1. registerConnections: This service register in AH framework a toolchain that

is passed as parameter.

2. updtateToolAddress: This service updates in AH framework the IP and Port of

a tool name that is passed as parameter.

3. getUriOfService: Gets the uri of a service name that is passed as parameter.

4. getEventPublishService: Return the AH event publishing service address.

2. Nodejs (www.nodejs.org). It is a JavaScript execution environment oriented to

asynchronous event management in a scalable network.

3. register-toolchain.js. This JavaScript file is executed in Nodejs environment and calls

the Registrator API Rest to register and authorize the toolchain that is passed as

parameter as a configuration file. See section Example of toolchain configuration file

for an example.

4. tool-adapter.js. This JavaScript file is executed in Nodejs environment. Each tool calls

the tool-adapter passing its IP and Port in a configuration file that is passed as

parameters. See section Example of tool configuration file, for an example.

8.2.2 Configuration Files
This section explains configuration files that are passed as parameter to the Software

Components described above.

https://spring.io/
http://www.nodejs.org/

 Page 45 (79)

8.2.2.1 Example of toolchain configuration file

This section shows a JSON configuration file corresponding to a toolchain called thermostat.

Main parameters inside the file are the from-to connections that define the information flow.
thermostat.json

{

 "toolchain": "thermostat",

 "connections": [{ "from": "temperaturesensor", "to": "heater", "channel": "temp2heat" }]

}

Note that registered tools have no information about IP Address and Port. This data will be

defined later (each tool will call the tool-adapter.js java script with these parameters).

8.2.2.2 Example of tool configuration file

This section shows a JSON configuration file corresponding to a tool called heater. Main

parameters inside the file are the registrator url (basically IP and Port) and the listening port of

the tool.
heater.json

{

 "tool": "heater",

 "registrator_url": "http://localhost:9000",

 "listen_iface": "Ethernet",

 "listen_port": 55116,

 "spawn": {

 "command": "node",

"args": ["-e", "require('readline').createInterface(process.stdin).on('line',l=>{const

obj=JSON.parse(l);console.error(obj.payload>28?'OFF':'ON');});setInterval(()=>console.log(JSON.stringify({

metaData:{type:'request',to:'temperaturesensor'},payload:''})), 1000)"],

 "options": {}

 },

 "toolAddressCacheTime":10,

 "launchOnConnection": false,

 "relaunchIfExit": false

}

8.3 Integration in Arrowhead Framework
This section shows how all the software components and configuration files describe above fit

together. A typical process is as follows:

1. The JavasScript register-toolchain.js file is executed in Nodejs with a parameter

consisting of a configuration file defining the toolchain. For example the file

thermostat.json defines a toolchain consisting of a temperature sensor and a heater in

which the temperature sensor (from) sends information to the heater (to) via AH Event

Handler:

thermostat.json

{

 "toolchain": "thermostat",

 "connections": [{ "from": "temperaturesensor", "to": "heater", "channel": "temp2heat" }]

}

This JavaScripts file register-toolchain.js invokes Registrator REST Web

Service::registerConnections service that will:

 Register temperaturesensor and heater in AH Service Registry.

 Page 46 (79)

 Authorize temperaturesensor to access heater in AH Authorization.

 Registers communication events in AH Event Handler.

2. The JavaScript file tool-adapter.js is executed in Nodejs for each tool defined in the

toolchain, in this case:

a. tool-adapter is invoked with configuration file temperaturesensor.json

b. tool-adapter is invoked with configuration file heater.json

The JavaScript tool-adapter.js invokes registrator REST Web

Service::updateToolAddress with the configuration file and will:

 Update the IP and Port of the tool in the AH ServiceRegistry

 Get the IP and Port of the AH Event Handler Service

 Orchestrate temperaturesensor and heater in AH Orchestrator.

8.4 Status of Work

Available Features Present Gaps

- Software Components and

Configuration Files of middleware

developed and tested.

- Integration with AHT Platform in

Ikerlan tested and working.

- Middleware ready for using in Fagor

Automation and Fagor Arrasate test

cases.

- Detailed documentation of Software

Components usage pending.

- Detailed documentation of

Configuration Files pending.

9 Extended Historian Service

9.1 Rationale for Integration
An Extended Historian Service (EHS) is developed as an optional Arrowhead core service. It

is an extension of an already planned core service Historian Service (or meanwhile renamed

Data Manager). The intention is to provide a broader functionality than the current concepts

provide, which better supports data analytics scenarios. The EHS will be used as base for

prototypical implementations of those tools in scope of the Arrowhead Tools project, which are

evaluated in use case task T9.4 “Production support, energy efficiency, task management, data

analytics and smart maintenance”.

Production systems today are most likely controlled by PLC-like systems based either on

special hardware or on industrial ready PC hardware. The controller is interfaced to necessary

sensors and actuators. Those systems have the small but important scope to guarantee the main

functionalities of the production systems.

Often there is the requirement to optimize the production process long-term regarding

performance, product quality or reliability of equipment. In order to use the potential, the data

of products and the process information have to be analyzed. The control procedures can then

be re-defined based on the results of the data analysis.

 Page 47 (79)

Data acquisition systems and data analytics functionalities are necessary for that purpose. Those

data acquisition systems access the data most likely from the controller, since most sensor

values have to be considered in the control procedure. But in some cases, additional sensors are

connected directly to the data acquisition system.

Most data acquisition systems come with some kind of data analytics functionality. But in some

cases there is a need to connect external data analytics software to the data pool. Then there is

a need to access the interfaces of the data acquisition system by external data analytics software,

which can become a difficult work and if it becomes too difficult, then company-internal

research work can be blocked due to the big efforts.

From the economic perspective of an industrial company, the data acquisition and data analytics

system are separate systems beside the control system, which requires separate investment for

hardware, licenses, commissioning and maintenance of the system necessary. This is expensive

and sometimes the reason, why appearing data is not exploited as good as it could be.

9.1.1.1 Data acquisition and analytics by use of the Arrowhead Framework

Delsing et al. [7] describe the Historian system of the Arrowhead Framework as usable for

storage, processing and visualization of data created by services of a local cloud. It should

provide a wide range of protocols and data models. The historian system can be orchestrated to

consume any services in the local cloud. The historian system consists of several services:

 Historian service: provides an operation to store sensor data (PutData).

 FileSys service: enables clients to store and delete files and folders like in a distributed

file system.

 Filter service: enables clients to retrieve data stored by the Historian service.

 Service information: provides information about the encoding of files, which is

primarily based on SenML, but has different basic encodings like JSON, CBOR or

XML.

 Service meta-data: provides information e.g. about active devices.

9.1.1.2 Motivation for the Extended Historian service

The initial idea and motivation of the Historian system of the Arrowhead Framework was really

future oriented and still holds: Provide a data acquisition and analysis system directly with

the communication platform.

However, there are several weaknesses regarding the current design and implementation of the

Historian system, which should be overcome with the implementation of the EHS:

 The Historian service is described as passive only. It implements only a PutData

operation. But in real scenarios it sometimes is necessary to acquire data sets

synchronously and at defined sample times. Thus, the service should include a kind of

job management to gather the data like other commercial data acquisition systems do.

 The use of file based data is potentially very slow for frequent data samples from a large

amount of sensors. It should be replaced by fast and reliable Open Source database

management systems.

 There are a lot of high performance data analytics systems on the market and even there

exist a lot of Open Source solutions. Thus, the Extended Historian service should make

 Page 48 (79)

it possible to interface to those systems, instead of providing the data encoded as SenML

files.

 There is a need for input of heterogeneous sensor data. Thus, the service needs a plug-

in concept for adapters to the data sources.

9.2 Technical Details
Figure 9.1 provides an overview of the Extended Historian service (EHS) and its application

context. Therein, the EHS consists of the following component types:

 Historian Database: the component, which stores the incoming data.

 Job Scheduler: the component, which is able to trigger data source adapters to gather

data from sensors and to put them into the Historian Database.

 UMAA-System: a component providing functionalities for role based user

management, authentication and authorization (UMAA).

The EHS is accompanied by several applications and adapters, which organize data exchange

with non-Arrowhead data sources or sinks:

 EHS Configuration System: this is a graphical user-frontend for configuration of the

internal data model and the job-scheduler of the EHS as well as for configuration of the

data source and sink adapters. It will be developed in WP5 of the AH Tools project. The

EHS Configuration System can be designed as internal module of the EHS.

 Data Source Adapter: a component, which connects to a sensor or other data source. It

is able to send and receive data over the industrial communication system used by the

sensor. Figure 9.1 depicts the following possibilities for initiating data acquisition:

o The EHS job-scheduler triggers the data source adapter to get data from the

sensors and to push it to the Historian Database.

o The data source adapter triggers the data acquisition from the sensor and pushs

the measured values to the Historian Database.

o The sensor actively triggers the data source adapter to take over the data from

the sensor (push) and to put it into the Historian Database.

o The orchestrator triggers the sensor to push data to the data source adapter and

to put it into the Historian Database.

 Data Sink Adapter: a component, which connects the historian database to the data

analytics software. It is able to provide the data in a data format and over a network

connection, which is usable for the analytics software.

Those EHS companion applications are separate processes. They will use the gRPC technology

for interprocess-communication with the EHS core system.

 Page 49 (79)

Extended Historian service
(EHS), (WP3)

DataSource
Adapter

DataSource
Adapter

DataSource
Adapter

DataSource
Adapter

Sensor Sensor Sensor Sensor

DataSink
Adapter

DataSink
Adapter

Historian
Database

Job
Scheduler

Job
Scheduler

Job
Scheduler

Orchestrator

Job
Scheduler

GNU R Python

EHS
Configuration
System
(WP5)

Examples of data
anylytics software:

Authorization
System

Service Registry

pull pull push push

query query

M
an

d
at

o
ry

 A
rr

o
w

h
ea

d
 C

o
re

 S
er

vi
ce

s

User
Management,

Authentication,
Authorization

(UMAA)

Figure 9.1: Extended Historian Service (EHS) and its application context

9.3 Integration in Arrowhead Framework
There are several Arrowhead Framework core services around the EHS:

 Service Registry: the service registry is used to make the EHS known in the Arrowhead

local cloud.

 Authorization System: the authorization system is used to validate access to the EHS by

sensors (push scenario) and to get access of the EHS to the sensors (pull scenarios) in

cases, where the sensors are themselves Arrowhead application services.

 Orchestration System: the orchestration system may initiate data transfer from sensors

to the EHS in cases, where the sensors are themselves Arrowhead application services.

9.4 Status of Work
We have currently following status regarding the EHS:

 There is a specification for the EHS available including a use case description,

description of technology candidates and a definition of basic building blocks of the

software architecture.

 The main technologies (Apache Spring Boot, Quartz Scheduler, gRPC for Java) have

been tested and integrated including tests of parallel working program threads.

 The EHS base system is under development, with a connection to a PostgreSQL

database for storing the time series.

10 WAE (Web-of-Things Arrowhead Enabler)

 Page 50 (79)

The WAE is a tool that enables the inclusion of a Web of Things ecosystem into an Arrowhead

Local cloud, by creating one service for each Web Thing. In detail, this is a an essential

middleware component that acts as a discovery bridge for the WoT layer.

10.1 Rationale for Integration
In order to present correctly the tool and its integration, it is necessary to introduce briefly the

Web of Things (WoT). The chaotic world of the Internet of Things is characterized by tens of

different technologies, protocols, and architectures for interconnecting Smart Things to the

Internet. Because of its fragmented nature, one of the biggest challenge of the IoT landscape is

constituted by the lack of interoperability. For this reason, starting from 2015, several

universities and companies in the WoT ecosystem seamlessly joined the W3C working group

for the definition of a Web of Things (WoT) standard, whose goal is claimed to counter the

fragmentation of the IoT, by defining a reference architecture, the communication patterns and

the interfaces of the Things; the rationale is to enable the interoperability among IoT systems,

regardless of the underlying stack implementation and of the networking technologies

being used.

The Web of Things paradigm presents nowadays the challenge of implementing a discovery

operation of Web Things that supports matching and lookup as well as orchestration. In fact,

Thing Discovery has been repeatedly claimed as a desirable feature to cope with several

problems, for instance, the mobility of Things.

10.2 Technical Details
We here briefly describe the implementation of the main components of our architecture

released in D4.2 (sub-document O2). The Service Registry is a JAVA server that exposes some

REST APIs. In particular, we used the API already available as open source project. All Web

Things involved in the scenario have been implemented and instantiated by using node-wot,

the official W3C framework for the WoT. The WAE component has been designed as a Web

Thing - for being able to natively speak to other W3C WoT entities - and as an HTTP client -

in order to use the Service Registry's APIs. As shown in the table below, following the paradigm

Properties, Action, Events as explained in the official WoT documentation, the WAE Web

Thing exposes the listOfWebThings Property for listing all the already known Web Things it

has published. Additionally, it exposes also the startCrawling and the query actions. The first

is automatically invoked once the WAE has been deployed to look for new Web Things that

have been published on the Thing Directory. The second one is invoked by a WoT Consumer

in order to query the SR and to get the list of services that match its request. Finally, a generic

event newWebThing is fired each time new Web Things have been discovered by the WAE.

Both the HTTP client of WAE and the AH Consumer have been customized for our need by

taking advantage of the already existing open source NodeJS Arrowhead Client. Each WoT

Consumer is a Mashup Application, i.e., a javascript application that uses node-wot framework

as a library and simply consumes multiple Things to interact with them in order to collect data

and manipulate it for its needs. Lastly, the ATM is an ExpressJS web server that maps each

Web Thing Affordance to a REST API and that uses the node-wot as a library behind the scenes

in order to interact with the Web Thing it represents.

Name Type Description

listOfWebThings Property List of all the Web Things the WAE is aware of.

 Page 51 (79)

startCrawling Action Start to look for new Web Things that are published on the TD.

query Action Forward the query of a Wot Consumer to the WAE.

newWebThing Event This event is fired when a new Web Thing has been discovered

on the TD by the WAE.

10.3 Integration in Arrowhead Framework
In order to support different types of external consumers interacting with the WoT ecosystem,

we propose the layered architecture released in D4.2 (sub-document O2). The architecture

consists of three conceptual layers: the Physical layer, the WoT Layer and the Arrowhead

Layer. Entities on each layer can communicate directly with other entities belonging to the same

layer as they are assumed to use the same application protocol.

Each sensor gets abstracted onto a Web Thing, according to the WoT paradigm. Each Web

Thing is then registered onto a special Thing Directory, a standard registry for the WoT

ecosystem. The central component of the WoT Layer, the WAE, can be classified as a WoT

Mashup Application. In detail, it periodically queries the Thing Directory to detect new Web

Things right after they spawn (i.e. the binding with the actual sensor is generated). As new Web

Things are detected, the WAE performs a publish operation for each of them against the Service

Registry in the Arrowhead Layer to publish Web Things as new Arrowhead services. The

communication between the WAE and the Service Registry is the sole case of inter-layer

communication channel, in which a component (in this case the WAE) acts as a proxy able to

use two different communication protocols.

Furthermore, each Web Thing is extended onto the Arrowhead Layer by a new module, called

Arrowhead Thing Mirror (ATM). The ATM exposes the Web Thing service endpoint as an

HTTP Web Service in the Arrowhead local cloud. Note that a Web Thing and its relative ATM

can run on the same piece of software as well as in separate components connected by a custom

communication link. The ATM plays, to some extent, the role of an Arrowhead service adapter,

however, it does not perform publish operation, as they are handled by the WAE.

The record published by the WAE exposes by default the endpoint and the metadata of the

ATM related to the Thing, while the JSON-LD description of the Thing at the WoT Layer is

converted to a string and encapsulated in the newly created ``TD'' subfield of the ``metadata''

JSON field of the service record. This way, a consumer can interact with the Web Thing in two

ways, depending on its communication capabilities:

1. An HTTP-enabled Consumer queries the Service Registry, selects the service that

provides the type of data needed and gets the endpoint of the service, which corresponds

to the endpoint of the related ATM. The Consumer then performs the consume calls

against the service offered by the ATM which, in turn, queries the Web Thing and

retrieves the data point. Response data travels then backwards to the Consumer.

2. A WoT-enabled Consumer queries the WAE, which retrieves the list services from the

Service Registry. As the consumer is only able to interact with WoT-enabled systems,

the WAE decapsulates the related TD from the field ``metadata'' of the service record

and sends it back to the consumer. The latter is then able to select a Web Thing among

 Page 52 (79)

the received ones and query it directly; the Web Thing endpoint is enclosed in the TD

itself, thus the actual endpoint, which belongs to the ATM, is ignored.

The whole interaction for the two types of consumers is shown in detail through the sequence

diagram in Figure 1. In particular, it shows mainly two patterns:

Figure 10.1 Sequence diagram presenting the interactions of all the components of our three-

layer architecture

Web Things' publication on SR when a Web Thing is generated, it automatically instantiates

an ATM to be able to fulfill a request coming from an AH Consumer. At the same time, the

Web Thing publishes itself on the Thing Directory, according to the draft of the W3C standard

proposal. The WAE is in charge of keep checking if new Web Things appear on the Thing

Directory, and in case to publish themselves on the SR. This can be achieved in two ways,

depending on the WAE implementation: either the WAE polls the Thing Directory or the WAE

is implemented as a Web Thing, so it can subscribe to Thing Directory's events. The SR is

listening from queries of services' consumers and replies with all the Services is aware of,

including the Arrowhead ones that however are not shown in this diagram.

Web Things' consuming once the services related to Web Things become available on the SR,

they can be queried by consumers. Depending on the kind of consumer, there are different

interactions. The easiest case is the one involving an AH Consumer, since it has only to query

the SR, to get the list of services and to directly interact with them through their ATM. A Wot

Consumer instead requires more steps in order to be able to retrieve the Thing Description of

the Web Thing that should be consumed. First, it has to send the query to the WAE, since it

might not be able to speak directly to the SR. Hence, the WAE forwards the request to the SR

 Page 53 (79)

and waits for the list of services that match the query originally coming from the WoT

Consumer. Finally, WAE returns the list to the WoT Consumer, that is now able to consume

the Web Thing and to interact with it, for instance by invoking one of its actions.

10.4 Status of Work

Available Features Present Gaps

- Discovery of Web Things

- Add new web things seamlessly to the

local cloud

- Interact with them through a WoT

consumer

- Interact with them through an

Arrowhead Consumer

- No interaction with Authorisation

- No interaction with orchestrator

- Not possible the other way around

(include an arrowhead local cloud

into a WoT ecosystem)

All these are planned

11 Python Client Library
This is a library that supports the creation of Arrowhead systems and services written in the

Python programming language.

11.1 Rationale for Integration
Python has seen a steady rise in popularity over the last several years, especially in the fields

of AI and machine learning. This library serves as a bridge to those and other communities that

want to integrate their Python programs in an Arrowhead local cloud.

The library has two main goals:

 Make it easy to create your own services.

 Automate the registration of services.

 Use a standard interface to use core services.

11.2 Technical Details
The current version of the library supports Python 3.8 and uses the Flask, Requests, and Gevent

3rd party libraries.

11.3 Integration in Arrowhead Framework
The library currently supports the service registry, orchestrator, and authorization core systems

with support for some, but not all, of their core services. Support for other core services will be

added as needed.

Regarding security, the library only supports the CERTIFICATE level security at this point,

but work on the INSECURE level is being developed.

11.4 Status of Work
Current version is available on PYPI (https://pypi.org/project/arrowhead-client/).

Further developments are undergoing but not yet published. However, they can be found in the

Github repository (https://github.com/arrowhead-f/client-library-python).

https://pypi.org/project/arrowhead-client/
https://github.com/arrowhead-f/client-library-python

 Page 54 (79)

12 Semantics translator
The need to establish dynamic and operational interoperability at the system of systems level

is challenging in heterogeneous semantic environments with a variety of data formats and

models, legacy systems and semantic spaces defined by different ontoligies and standards.

System-level ontologies capture detailed characteristics of contexts, models, and interactions.

Thus, the semantic space is complex and it is also expected to be non-static due to

reconfigurations, updates, technology migration, maintenance etc [38].

The Semantics translator is a concept under development that takes advantage of machine

learning methods to translate messages sent between services, thereby aiming to signficantly

reduce the system of systems engineering effort required and improve the scalability of the

Arrowhead Framework beyond the limits of manual system design and orchestration.

12.1 Rationale for Integration
A machine-learning concept for semantic translation is investigated as a means to enable

scalable dynamic and operational interoperability in heterogeneous semantic environments.

Aiming to lower the cost of system integration and system of systems engineering, we are

investigating techniques for the translation of messages exchanged by Arrowhead services

where data, metadata, goals and policies can all be incorporated in the process.

This approach is essential for scalable translation, because the meaning of exchanged messages

depend on the intended use of the information (descriptions of meaning are relative). A

pragmatic approach towards scalable dynamic interoperability is a machine learning approach

where metadata and the purpose and policies of the system of systems are used for message-

driven generation of the translators. This is how machine learning models are successfully used

to correctly interpret complex inputs like the color components of pixels in deep learning based

computer vision models, or characters in models for natural language processing. Thus, in

principle the approach investigated is feasible and is the only approach identified that can lead

to cost-efficient and scalable solutions in the context outlined above.

12.2 Technical Details
A machine learning based concept for semantic translation that can enable dynamic and

operational interoperability at the system of systems level is outlined in [39] and is partially

implemented and evaluated in a simulated environment in [40], where a translation accuracy of

75% is achieved using an encoder-decoder type deep learning architecture as illustrated in the

figure below.

Figure 12.1 Encoder-decoder concept for message translation investigated and tested in a

simulated environment in the paper [40]. Deep learning based encoders, EA,B, and decoders,

 Page 55 (79)

DA,B, are trained with unsupervised learning to translate messages between two incompatible

heating and ventilation systems, SYS A/B, via an intermediate embedding z.

12.3 Integration in Arrowhead Framework
The Semantic translator is a new concept under development [39]. Partners have performed

tests in a simulated environment that show promising results [40] and an experiment with a lab-

scale production process is ongoing. The method needs to be further developed to meet the

requirements of a production environment. Further development and testing is thus required

before integrating the machine learning concept for semantic translation in the Arrowhead

Framework.

12.4 Status of Work
The work so far has focused on establishing an unsupervised deep-learning based architecture

for service message translation [40] and further work is ongoing to implement additional

aspects of the full concept outlined in [39]. In particular, we are investigating how to incorporate

additional metadata in the translation model like RDFs, and more user-friendly utility and

policy descriptions, thereby aiming for Arrowhead Framework compliance.

13 Code generation

13.1 Rationale for Integration
Reducing the need for engineering effort in updating code for a system that shall consume a

specified and produced service.

13.2 Technical Details
This work contributes with an engineering approach for creating interoperability among

heterogeneous systems in service-oriented architecture (SOA) environments by generating an

autonomous consumer interface code at run time. The proposed system makes use of service

interface descriptions to dynamically instantiate a new autonomously generated interface that

resolves communication mismatches between provider and consumer. As illustrated in the

following figure, the generated interface provides service contract translation to overcome

interoperability issues.

Figure 13.1 Arrowhead consumer interface generation scenario.

 Page 56 (79)

Furthermore, the work includes an analysis of service contracts and the capability of machines

to determine interoperability mismatches. A comparison have been made of three commonly

used description languages, WSDL, WADL, and OpenAPI. They have been analyzed and

compared based on key requirements for the development of new tools such as interface

generators and service contract translators. The results of the comparison highlight the language

limitations to fully describe the service contract. The misalignment between the available

interface description languages and the service contract requirements is outlined to help extend

these languages to fully describe the service contract in future improvements.

13.3 Integration in Arrowhead Framework
Currently at prototype status

13.4 Status of Work
Working code and two papers describing core ideas behind. The current GAP is a well defined

approach and methodology for identifying the miss-match between the service contract of the

producer and the consumer.

14 Integration of OPC-UA server with late binding
An Arrowhead Framework system that intercede for an OPC-UA server has been developed.

To demonstrate its potential, a Siemens PLC with an integrated OPC-UA server is connected

to a model assembly with two machining stations and four conveyor belts. OPC-UA promotes

a service oriented architecture, where one can at runtime discover the “nodes” or capabilities

of the asset (in our demonstrator this is the complete assembly line). These capabilities are then

discovered by the Arrowhead Framework and registered as services with the service registry.

Emerging behavior includes finer granularity of cybersecurity and late binding. Authorization

is at the service level rather than at the system level. That is some systems are allowed to

consume only certain services and not others. With OPC-UA, which uses the same certificate

scheme, once access is granted, one has full access to all nodes. In our demonstrator, we show

that accessing a service can be done at run time by describing the desired service.

14.1 Rationale for Integration
OPC-UA is already used in industry and the Industry 4.0 Platform often refers to it as a standard.

Since the Arrowhead Framework interoperates with different IoT and CPS solutions,

interacting with OPC-UA devices is natural.

Any investment done with OPC-UA solutions (i.e., brown field) can easily adopt the

Arrowhead Framework and that is what is shown here.

14.2 Technical Details
The Arrowhead Framework application use Eclipse Milo to enable it to be an OPC-UA client

and scan the available nodes.

Subscription to events is also possible.

14.3 Integration in Arrowhead Framework
The integration with the Arrowhead Framework is smooth and complete. All that is needed is

the URL of the OPC-UA and its main node.

 Page 57 (79)

14.4 Status of Work
The Arrowhead Framework OPC-UA is functional and has been logging status states of an

assembly line in northern Sweden with the millisecond resolution to a Jotne local cloud in

France. Any changes in capabilities of the assembly line/PLC is automatically handled by late

binding.

15 Translator system

15.1 Rationale for Integration
The Translator system is responsible for translating between different communication and

semantic protocols.

15.2 Technical Details
The Translator provides services for configuring translation tasks and translation between

protocols such as HTTP and OPC-UA or sematic formats like JSON and XML.

15.3 Integration in Arrowhead Framework
Part of Arrowhead Framework.

15.4 Status of Work
The system is updated and is now targeted for the next official release of Arrowhead.

16 Exchange Negotiation Service (from Productive 4.0)

16.1 Rationale for Integration
The Exchange Negotiation Service, aka the Contract Proxy system, allows distinct

stakeholders to negotiate about and commit to contractual rights and obligations. The service

itself provides the primitives and protocols required to perform such negotiations and prove

what changes in rights and obligations have been committed to, while any system actually

producing the service must define the logic and contractual terms required for any changes to

rights and obligations to have legal bearing. The service is intended to be useful for negotiating

everything from payment terms to frame agreements, and aims to become an integral

component for buying or selling access to Arrowhead services or to concrete data objects, such

as digital twins.

16.2 Technical Details
The Contract Proxy system consists of four primary components, illustrated in following figure,

which are 1) the Negotiation Service (NS), 2) the User Registry (UR), 3) the Exchange Ledger

(EL) and 4) the Definition Bank (DB).

 Page 58 (79)

Figure 16.1 The components of the Contract Proxy system.

The recording of past agreements can be implemented in a centralized system, with a distributed

ledger technology (DLT), aka BlockChain, or any other suitable way. LTU has chosen to

implement the Exchange Ledger with signature chains that are kept by negotiating parties only

to preserve privacy. That is, each signature chain can be kept private in between parties that

uses the Contract Proxy to interact. As shown in the following picture, the Negotiation service

is kept simple to provide support for negotiation only. More advanced logic is thereby to be

implemented by each party, outside the Contract Proxy system.

Figure 16.2 The Contract Proxy Negotiation service.

16.3 Integration in Arrowhead Framework
Plan to include in the Arrowhead Framework as part of the continued work.

16.4 Status of Work

The service is being prepared for final-review demonstration in the Productive 4.0 project. This

demonstration aims at showing the use of contractual interactions supported by the Contract

Proxy system for a supply-chain scenario with financial forecasting based on the trail of data

kept by the system as well as the ordering of production, including negotiation of price and

volumes. In addition, the demonstration may include contractual interactions for handing out

certificates at onboarding of devices into an Arrowhead Local cloud. As illustrated in the

following figure, the demonstrations include integration with the Event Handler system,

Gateway systems and the Certificate Authority system.

 Page 59 (79)

Figure 16.3 Demonstration of three different usages of the Contract Proxy system.

For the Contract Proxy system, the Arrowhead Framework documentation is being prepared to

follow the updates of the implementation. The work on this system will be continued as part of

Arrowhead Tools.

17 Secure data sharing (new concept)

17.1 Rationale for Integration
Automated and secure sharing of data from time series databases is becoming increasingly

important for the industry, e.g. to gain from analyzing expertize outside the own organization,

to support AI and machine learning in between organization, or to share information to facilitate

remanufacturing, refurbishing and reuse of products and materials in a circular value-chain.

The needs for automated and secure data sharing applies to essentially any data, including time

series data. In this work, LTU has focused on the use of attribute based access control (ABAC)

systems and their ability to onboard new data streams and control access to data. The systems

evaluated are the Next-Generation Access Control (NGAC) developed by Institute of

Standards and Technology (NIST) and the Extensible Access Control Markup Language

(XACML) by the Organization for the Advancement of Structured Information Standards

(OASIS). The results of this work are documented in a paper published at IEEE EFTA 2020

[37].

17.2 Technical Details
Findings presented in the above-mentioned paper include that NGAC supports automation of

data stream onboarding and access control at the level of individual data streams but need to be

extended to also support more fine-grained access control with line-based access restrictions to

Liquidity forecast
engine

Service
Registry

Authorisation Orchestration

EventHandler

Manufacturing
ordering

ContractProxy Gateway

A

Contract
Negotiation

ContractControl(contract)

EventPublish

Event
Subscription

(events)

On-boarding
controller

OPC-UA

B

C

Certificate
synchronisation

Charging station

Supply-chain
tracking

Supply-chain
tracking

Manufacturing
ordering

Certificate
synchronisation

Supply-chain
tracking

ContractProxy

Service
Registry

Authorisation Orchestration

ContractProxy

Service
Registry

Authorisation Orchestration

EventHandler

Certificate
Authority

Workflow
Manager

Workflow
Excecutor

Sensors /
actuators

Plan Description

Gateway

Gateway

 Page 60 (79)

the data. Such restrictions are needed for example to easily automate the access control for

giving access only to data before a certain date and time and block access to newer data. As

illustrated in the following figure, the experimental system set up implements pre-filtering of

queries to perform the desired access control.

Figure 17.1 Pre-filtering of queries to time-series data.

17.3 Integration in Arrowhead Framework
The aim is to later integrate the demonstration with the Arrowhead Framework as a tools for

secure data sharing.

17.4 Status of Work
Ongoing work include setting up a proof-of-concept demonstration for automated access

control to time series data based on NGAC.

18 Plant Description Engine (from Productive 4.0)

18.1 Rationale for Integration

The Plant Description Engine (PDE) is a supporting core system that has been developed

during the period, starting with a conceptual model and a driving use case where a plan (i.e., a

plant description) is established to deploy and interconnect predefined AH systems in a multi-

vendor scenario. The PDE has a purpose of choreographing the consumers and producers in

the plant (System of Systems / Local cloud) by interaction with the Orchestrator to allow

systems to connect (using late binding) according to the plan. The PDE performs monitoring

to oversee that the plan is followed and can produce alarms when something falls out of plan.

18.2 Technical Details

The PDE can receive a number of plans. A plan (i.e., a plant description) is an abstract view

on which systems the plant should contain and how they should be connected as consumers

and producers. The plan is used to populate the Orchestrator with store rules for each of the

https://github.com/jronnberg/core-java-spring/tree/pde#orchestrator

 Page 61 (79)

consumers. The abstract view does not contain any instance specific information, instead

meta-data about each system is used to identify the service producers.

The plant description engine (PDE) can be configured with several variants of the plant

description of which at most one can be active. The active plant description is used to

populate the orchestrator and if no plant description is active the orchestrator does not contain

any store rules populated by the PDE. This can be used to establish alternativ plants (plan A,

plan B, etc).

The PDE gathers information about the presence of all specified systems in the active plant

description. If a system is not present it raises an alarm. If it detects that an unknown system

has registered a service in the service registry it also raises an alarm. For a consumer system

to be monitored the system must produce the Monitorable service and hence also register in

the service registry.

18.3 Integration in Arrowhead Framework

The PDE has been integrated with Arrowhead. Please see the Plant Description Engine -

System of systems Description (SosD) and Plant Description Engine HTTP(S)/JSON -

System Description (SysD) for further details.

The PDE produces two different services:

 the Plant Description Management service - Plant Description Management JSON

 the Plant Description Monitor service - Plant Description Monitor JSON

The PDE consumes the following services:

 the Service Discovery service produced by the Service Registry core system

 the Orchestration Store Management service produced by the Orchestrator core system

 the Orchestration service produced by the Orchestrator core system

 the Inventory service produced by an Inventory system - Inventory JSON

 the Monitorable service produced by the systems in the plant - Monitorable JSON

18.4 Status of Work
A proof-of-concept for demonstration is ready. This demo is under the assumption that some

functions in the core systems are in place, which will be in future versions of those systems.

19 Authorization by Power of Attorney (new concept)

19.1 Rationale for Integration
Distributed Internet of Things and cyber-physical systems have the potential to act on behalf of

their owners. To accomplish this in a controlled way, there is a need for a model where such

devices can be given exact credentials and authorities for the specific actions they should be

taking. Traditional models where each device has an account of its own at various service points

to regulate its credentials have scalability problems in management of all the accounts and

credentials. Instead, we propose a model based on principals and agents, where principals can

independently define from case to case which credentials and powers to delegate. The results

of this work are documented in a paper published at IEEE EFTA 2020 [41].

https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/monitorable-sd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-engine-sosd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-engine-sosd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-engine-sysd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-engine-sysd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-management-sd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-management-idd-http-json.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-monitor-sd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/plant-description-monitor-idd-http-json.md
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#serviceregistry_usecases
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#serviceregistry
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#orchestrator
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#orchestrator
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#orchestrator
https://github.com/jronnberg/core-java-spring/blob/pde/README.md#orchestrator
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/inventory-sd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/inventory-idd-http-json.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/monitorable-sd.md
https://github.com/jronnberg/core-java-spring/blob/pde/documentation/plant-description-engine/monitorable-idd-http-json.md

 Page 62 (79)

19.2 Technical Details
In this work LTU has defined the conceptual model and an early proof of concept, where we

introduce the Power of Attorney (PoA), which is a self-contained and signed digital document

that for a limited time and in a defined context, authorizes a particular agent (whether a

person or device) to sign on behalf of a principal. Such a PoA includes digital signatures

based on public and private keys to identify the parties, while the key content of a PoA is to

specify exactly what the principal authorizes the agent to perform on its behalf. An essential

property is that the PoA is self-contained, so that it can be brought forward by an agent to a

service in order to use the accounts and some well-defined sub-parts of the authorities of its

principal, for example to retrieve or produce data on behalf of its principal.

Although such self-contained PoAs can be stored anywhere, we also design a conceptual

model for a signatory registry that can store PoAs and keep track of organizational hierarchies

in terms of people and devices according to the defined model.

19.3 Integration in Arrowhead Framework
The aim is to later integrate the demonstration with the Arrowhead Framework as a tool for

delegating authority.

19.4 Status of Work
Ongoing work include setting up a proof-of-concept for demonstration.

20 Software Deployment and virtualization (new concept)

20.1 Rationale for Integration

Distributed Internet of Things and cyber-physical systems are networked and to a large extent

software defined. This means that devices are becoming more general purpose and that their

exact functionality is defined by software running onboard and in the cloud. In this context,

updates and upgrades of functionalities is mostly done by deploying software to devices.

To accomplish this in a controlled way, there is a need to automate the deployment of

software and to support verification and validation of the functionalities.

The results of this work are documented in a paper that is under submission:

”A Study on Industrial IoT for Mining Industry: Synthesized Architecture and Open Research

Directions”

20.2 Technical Details
In this work the starting point was to explore the needs in industrial IoT in general, and

specifically analyzing the current state and challenges of the mining industry. We identified

the vertical fragmentation and lack of automation as key issues. We have surveyed the IIoT

standards and architectures suitable for the mining industry. From these, we synthesize a

high-level IIoT architecture. We have identified the open research challenges clearly and

depict that the edge and fog computing is the most challenging layer for the mining industry

and the same is truefor various industrial sectors. The above mentioned challenges for the

edge can be addressed with the advancements in the virtualization techniques for edge

computing. The virtualization-based solution in the edge computing for deployment,

orchestration, updates, and upgrades are highly needed. Not only the mining industry but

 Page 63 (79)

almost all the industries are quite complex at the edge with the advancement of IoT based

microservices, and systems. There are a great number of solutions available for cloud

computing orchestration and deployment of services, but a standard or concrete solution

targeting the same problem for the edge/fogdoes not exist.

20.3 Integration in Arrowhead Framework
The aim is to later make a Proof-of-concept for edge virtualization and software deployment

for applications within the Arrowhead Framework.

20.4 Status of Work
Ongoing work include initial suproof-of-concept for demonstration.

21 Workflow Management/Executor (from Productive 4.0)

21.1 Rationale for Integration
Important to address the execution of a product assembly workstation operations based on the

product recipe. Thus enabling production flexibility and lot-size one capabilities in a production

line.

21.2 Technical Details
The Workflow Management provides integration with ERP systems to collect production order

and translate them to state machines for manufacturing. The state machines are then transferred

to different Workflow Execution systems that integrate with different tools to be used for the

manufacturing, effectively hiding manufacturing and tool details. As illustrated in the following

figure, this concept facilitates scenarios where more advanced product carry their own recipes

for how they shall be produced in a manufacturing or assembly line.

Figure 21.1 The Smart Product, the Workstations and their interactions in the Workflow

Management/Executor concept

As shown in the figure, with the Workflow Manager/Executor systems, a plant can implement

decentralized and distributed workflows.

 Page 64 (79)

21.3 Integration in Arrowhead Framework
Currently at prototype status

21.4 Status of Work
Working code and integration to PlantDescription and Exchange Network in the works. The

prototype can receive and translate a product production recipe into a work order for a

workstation in a production line. This work order can then be executed.

The current GAP is how to address product recipes based on a number of various standards,

like BIM v5, ISO 10303, ISO 15926 etc.

22 Workflow Choreographer / Workflow Executor
In order to manage and execute workflow recipes in production and logistics, The Workflow

Choreographer supporting core system was defined within Arrowhead. There are a lot of

requirements and restraints the Workflow Choreographer faces upon the management and

execution of workflows, such as constraints of workstations that are used, the sequencing

(sometimes parallelisms) of various tasks and services, and further aspects of production plants.

It was first introduced as an engine that controls automated production and in doing so was

planned to greatly reduce the difficulty of management challenges in a production facility.

The features and services that the Workflow Choreographer provides can be seen on the below

figure.

 Figure 22.1 The functions and services of the Workflow Choreographer

First it processes the Production Order (PO) acquired from various Enterprise Resource

Planning (ERP) systems and creates the Production Recipe (PR) based on this data.

Furthermore, it manages the different Workflow Executors (WE) to accomplish the tasks at

hand either by instantiating them or sending messages to already instantiated WEs. After getting

information about the production steps in a recipe the WEs execute the related activities by

coordinating the workstations to perform the modifications described in the PR. From the

Arrowhead Framework's point of view the Choreographer pushes requests to the Orchestrator

and subscribes to events reported by other application systems.

 Page 65 (79)

The Workflow Choreographer needs to store information about every workflow running in the

system to ensure their proper execution by monitoring, detecting and handling possible errors

occurring during production. To achieve this, two core systems support the workflow

Choreographer, namely the Orchestrator and the Event Handler (EH). The former enables the

Choreographer to pair application systems (service consumers and providers) together while

the latter delivers messages across the system if something goes wrong or a workstation finished

task execution successfully.

The below figure shows a simple workflow for the Choreograper [42]. The Choreographer

consumes the service of the Orchestrator for pairing the two application systems for starting

task execution. Then the WE takes control and manages the application systems to achieve the

behavior described by the production recipe. This is followed by a callback to the

Choreographer with the result (either if the task is done or some unexpected error happened

that needs handling).

Figure 22.2 Services consumption interactions in a the simple scenario when the Workflow

Choreography and Workflow Executor working together

Workflow Choreographer is a workflow governing unit in the Arrowhead Framework. It can

create workflows from the Production Orders and allocate tasks to the Workflow Executors for

execution while logging relevant data about every phase of the production.

The initial concept of the Workflow Choreographer in Arrowhead has aimed to execute only

predefined tasks in static environments. In the latest period we went further and added new

functions and features to the system making it capable of working in dynamic scenarios where

occasionally some devices go offline even during execution and another device must step in to

accomplish the task [43].

The main new element introduced in this part of our work is the creation of Workflow Executors

(WEs) and their integration with the Workflow Choreographer. WEs make it possible to

establish connection between the AH core systems (Orchestrator, Choreographer) and the

 Page 66 (79)

Application Systems (application service providers, consumers). In the previous Choreography

versions the providers communicated with the Choreographer directly, which introduced

significant dependency from the AH's point of view. Services provided by the Arrowhead

Framework core systems should not introduce future implementation difficulties for the

Application Systems therefore the independence between the core systems and the various

application service providers was cut to almost zero by using WEs.

22.1 Rationale for Integration
Workflow Choreography and Execution is in the main stream of Arrowhead Tools, because it

supports production workflow planning, recipe execution in a dynamic manner.

22.2 Technical Details

To highlight the new contribution for Workflow Choreography and Execution, the below figure

shows the high-level architecture of a Local Cloud with the Arrowhead Core Systems, the

Application Systems, including the Workflow Executors and the various services they provide

each other.

Figure 22.3 Local Cloud model with the Workflow Choreographer and Executors

 Page 67 (79)

To accomplish the execution of each task in the recipe, the Choreographer sends a request to

the suitable Executor. In this case the WEs can be comprehended as special consumers by

pushing the request they get from the Choreographer to the corresponding providers, in other

words forcing these providers to execute tasks the Choreographer previously allocated to them

according to the production recipe by service consumption. The WE can monitor the status of

the tasks under execution in various ways e.g., by periodically checking the blinking of a led

sensor on the device, polling the providers regularly or waiting for callback messages from the

providers executing the task.

A more complex behavior – fitting the shown local cloud – is depicted by the below figure,

which shows the sequence of messages and method calls during workflow execution.

Figure 22.4 An example message sequence for the Local Cloud with the Workflow

Choreographer and the Executors

 Page 68 (79)

When the Choreographer is tasked to manufacture a product, first it checks if the Local Cloud

contains all the necessary providers and Workflow Executors according to the recipe. If it finds

that the product could not be manufactured under the current circumstances then a system

operator is warned to fill in the gaps by either adding the missing provider systems to the

environment or by extending the functions of the current WEs. In some cases even adding and

implementing new WEs may be needed.

22.3 Integration in Arrowhead Framework
The Workflow Choreographer has become a fully released Arrowhead supporting core system

with version 4.2. The Workflow Executor works with the Choreographer in harmony as a

prototype, but it has not been fully reviewed and released yet. Nevertheless, the Workflow

Executor acts as an Application system.

22.4 Status of Work
The Choreographer is released together with other v4.2 Arrowhead core systems; the Workflow

Executor is being reviewed and fully integrated with the next release version.

23 Energy IoT Monitoring Platform
The Arrowhead Framework can be used in a Smart Energy use case scenario to implement an

IoT monitoring platform for smart meters. In order to operate a large fleet of sensors across the

region, managers and maintainers need advanced tools to control and monitor the status of edge

devices. The main purpose of the proposed system is to support those figures in the management

and maintenance of smart meters by providing an integrated platform to collect and visualize

information about the status of peripheral devices. This kind of information can enable the

creation of more advanced analytics to track and monitor the coverage of smart meters, together

with their activities. Furthermore, information about locality of individual devices can be

meaningful to produce data analytics aggregated by location, thus allowing to monitor the

energy consumptions of specific geographical areas.

23.1 Rationale for Integration
The Arrowhead Framework will provide basic functionalities for service discovery,

orchestration and authorization. The information about the status of smart meters together with

their power measurements constitute the services provided by our application and can be

consumed by interacting with the Arrowhead Framework Core Systems (service registry,

orchestrator, authorization). The following picture shows the architecture of the proposed

monitoring platform.

 Page 69 (79)

Figure 23.1 The architecture of the proposed Arrowhead-compliant monitoring platform

23.2 Technical Details
The monitoring platform consumes status information and energy data from the edge devices

of an existing legacy infrastructure and supplies them to potential third-party consumers by

using the Arrowhead Framework. The legacy infrastructure is provided by a third-party

stakeholder operating in the energy sector, which already owns a fleet of sensors deployed

across several households. The sensors operate in the low frequency range with a sampling

frequency of 1 Hz and periodically send their status information to the cloud. The data received

from smart meters are preprocessed and permanently stored in a Microsoft Azure database. The

database represents the interface between the legacy infrastructure and the monitoring platform,

exposing all available status information and energy data to the Arrowhead Framework through

the database API.

23.3 Integration in Arrowhead Framework
The monitoring platform is integrated into the Arrowhead Framework by extending the Java

Spring client-skeletons provided by the Arrowhead Consortia. The monitoring platform

provides an interface between the Arrowhead Framework and an already existing legacy

infrastructure. The platform comes up with a configurable web dashboard which extends the

functionalities of the consumer application, thus facilitating data access from managers and

maintainers.

The Arrowhead Framework will be extended with additional services for monitoring the status

of edge devices during operation. Information such as battery status, device’s activities and

location can be retrieved and combined together to produce useful analytics for efficiently

maintaining the fleet of sensors. Moreover, energy data can be aggregated by location in order

to perform aggregate analysis for specific regions. All information will be provided through the

implementation of parametrized APIs and web dashboards.

Edge devices

Provider

Consumer

POLITO

 Page 70 (79)

23.4 Status of Work
The Politecnico di Torino (Polito) has defined the requirements and the functional design of the

monitoring platform, in accordance with the third-party stakeholder owning the legacy

infrastructure. In the next months the application logic and the web dashboard will be

implemented to support the required functionalities.

24 Arrowhead Framework on STM32
 The STM32 family of 32-bit microcontrollers based on the Arm® Cortex®-M processor is

designed to offer new degrees of freedom to MCU users. It offers products combining very

high performance, real-time capabilities, digital signal processing, low-power / low-voltage

operation, and connectivity, while maintaining full integration and ease of development [40].

24.1 Rationale for Integration
STM32 boards constitute one of the main products family of STMicroelectronics and they have

been used in smart Energy scenario and other usecases. It will also used in WP6 activity.

24.2 Technical details
The activity aims to develop an entire deployment unit based on STM32 platforms. The unit

will be a local cloud, which is an autonomous set of devices that have access to an Arrowhead

Framework (represented in Figure).

Figure 24.1 Main elements of an Arrowhead Local Cloud with STM-32 Application Systems

The implementation will be a customization of the Arrowhead framework tailored for the

embedded platform, in particular a single jar implementation optimized in terms of memory

footprint, and execution time.

24.3 Integration in Arrowhead Framework
Currently at prototype status

24.4 Status of Work
Selection of the board for the framework on going. Development of consumer and producer

code in the works.

 Page 71 (79)

25 Keycloak integration

Keycloak [28] is an open source Identity and Access Management solution aimed at modern

applications and services. It makes it easy to secure applications and services with little to no

code.

This tool supports:

 Single-Sign on

Users authenticate with Keycloak rather than individual applications. This means that the

applications don't have to deal with login forms, authenticating users, and storing users.

Once logged-in to Keycloak, users don't have to login again to access a different application.

This also applied to logout. Keycloak provides single-sign out, which means users only

have to logout once to be logged-out of all applications that use Keycloak.

 LDAP and Active Directory, existing user directories can be used for corporate use

 Standard Protocols

OpenID Connect, OAuth 2.0, SAML 2.0, which are widely used in the industry

 Centralized Management for admins and users via Account Management Console

Through the account management console users can manage their own accounts. They can

update the profile, change passwords, and setup two-factor authentication.

Users can also manage sessions as well as view history for the account.

 Custom password policies

 Extensions through custom code

25.1 Rationale for Integration
The Management Tool which is interfacing with the Arrowhead Framework is capable of the

management of Local Arrowhead Clouds. But the Tool itself does not offer any authentication

or authorization methods. This way anyone is capable of accessing high level Arrowhead

functions. This poses security risks which is unacceptable in the industrial world. Integrating

Keycloak into the Management Tool for this reason, offers an elegant solution for this problem.

25.2 Technical Details

The implementation has two parts:

1. Installing and configuring Keycloak to a host machine. They provided guide by

Keycloak was followed during the setup. Furthermore, all setup regarding the user

authentication / authorization and role management has to be made on the Keycloak

side

2. Interfacing with Keycloak in the Management Tool; the below figure shows the

complete process.

 Page 72 (79)

Figure 25.1 Authorization flow with Keycloak

The Authorization flow starts with the user opening the Management Tool. The

Management Tool checks for the existence of the authentication token. If no

authentication token is found, the user needs to authenticate itself. Login data must be

provided for Keycloak by the user. Then Keycloak contacts the company’s LDAP or

Active Directory based database to verify the login information. If the login data is

correct then Keycloak generates a token for the user. This token contains all necessary

information for the Management Tool.

These tokens are JSON Web Tokens (https://jwt.io/). If we further inspect the token,

we can see what information does it contain.

o Issue time

o Expiry time

o Issuer

o Authorized Party

o Allowed-Origin

o Roles

o Email

o Family Name, Given Name

With this information the Management Tool can validate the token, moreover it is capable

of dynamically disable functionality based on the role of the user. A practical example is,

that a technician has only read only right (displaying data on graphs and in table views)

while the System Operator has full access to every part of the framework.

25.3 Integration in Arrowhead Framework
Since Arrowhead Framework does not have User Management, it only uses X.509 Certificates

for client authentication

The Arrowhead Management Tool is a widely used tool by many parties in the consortium.

This enhancement to the Tool allows them to limit access and secure their instances.

 Page 73 (79)

25.4 Status of Work
Available Features:

 User Authentication in Management Tool with the help of Keycloak

 Role management

 LDAP, Active Directory integration

Present Gaps:

Fine tuned role management, further limiting access for different core systems in the

Management Tool.

26 Conclusions

The core concepts of the Arrowhead Framework keeps expanding and maturing. The long-term

governance model is successful so far: more and more Eclipse IoT projects consider to

collaborate with parts oft he Arrowhead Tools project, actively. The proceedings of its

conceptual growth, its design and implementation are summarized within this document. There

are three kinds of growth regarding the framework.

First, it is the natural maturation of core systems and services – through reviews, re-design

steps, implementational fine-tuning, and then again reviews.

Second, the framework keeps refining the already included concepts, and keeps adopting new

ones that are necessary to cover the interoperability, integrability and engineering needs of real-

life scenarios.

Third, a very visible part of this document: Eclipse IoT projects actively finding collaboration

and integration possibilities with Arrowhead, and this is possible now on the re-usable open-

source code level as well, due to the fact that Arrowhead recently became an approved,

continuously reviewed, governed project under the Eclipse license.

 Page 74 (79)

27 References
[1] Eclipse IoT Working Group, “The Three Software Stacks Required for IoT

Architectures,” 2016. [Online]. Available:

https://iot.eclipse.org/community/resources/white-papers/pdf/Eclipse IoT White

Paper – The Three Software Stacks Required for IoT Architectures.pdf.

[2] E. Foundation, “Eclipse IoT,” 2019. https://iot.eclipse.org/ (accessed Apr. 25, 2020).

[3] Eclipse IoT Working Group, “Open Source Software for Industry 4.0,” 2017.

[Online]. Available: https://iot.eclipse.org/resources/white-papers/Eclipse IoT White

Paper – Open Source Software for Industry 4.0.pdf.

[4] “Eclipse Vert.x.” https://vertx.io/ (accessed Apr. 25, 2020).

[5] “Spring.” https://spring.io/ (accessed Apr. 25, 2020)

[6] “Eclipse Vorto.” https://www.eclipse.org/vorto/ (accessed Apr. 25, 2020).

[7] J. Delsing, IoT automation: Arrowhead framework. CRC Press, 2017.

[8] C. Hegedus, P. Varga, and A. Franko, “Secure and trusted inter-cloud

communications in the arrowhead framework,” Proc. – 2018 IEEE Ind. Cyber-

Physical Syst. ICPS 2018, pp. 755–760, 2018, doi: 10.1109/ICPHYS.2018.8390802.

[9] O. Carlsson, D. Vera, J. Delsing, B. Ahmad, and R. Harrison, “Plant descriptions for

engineering tool interoperability,” IEEE Int. Conf. Ind. Informatics, vol. 0, pp. 730–

735, 2016, doi: 10.1109/INDIN.2016.7819255.

[10] Open Mobile Alliance, “Lightweight M2M (LWM2M) – OMA SpecWorks.”

https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-

lwm2m/ (accessed Jan. 19, 2020).

[11] “Eclipse Leshan.” https://www.eclipse.org/leshan/ (accessed Apr. 25, 2020).

[12] O. Carlsson et al., “Configuration service in cloud based automation systems,”

IECON Proc. (Industrial Electron. Conf., pp. 5238–5245, 2016, doi:

10.1109/IECON.2016.7793489.

[13] “Eclipse Wakaama.” https://www.eclipse.org/wakaama/ (accessed Apr. 25, 2020).

[14] “Eclipse Keti.” https://projects.eclipse.org/proposals/eclipse-keti (accessed Apr. 25,

2020).

[15] “Eclipse Mosquitto.” https://mosquitto.org/ (accessed Apr. 25, 2020).

[16] “Eclipse Paho.” https://www.eclipse.org/paho/ (accessed Apr. 25, 2020).

[17] A. Zabasta, K. Kondratjevs, J. Peksa, and N. Kunicina, “MQTT enabled service

broker for implementation arrowhead core systems for automation of control of

utility’ systems,” Proc. 5th IEEE Work. Adv. Information, Electron. Electr. Eng.

AIEEE 2017, vol. 2018-Janua, pp. 1–6, 2017, doi: 10.1109/AIEEE.2017.8270543.

https://iot/
https://iot/
https://iot/
https://vertx/
https://spring/
https://www/
https://www/
https://www/
https://www/
https://projects/
https://mosquitto/
https://www/

 Page 75 (79)

[18] “Eclipse Ditto.” https://www.eclipse.org/ditto/ (accessed Apr. 25, 2020).

[19] H. Derhamy, J. Eliasson, and J. Delsing, “IoT Interoperability – On-Demand and

Low Latency Transparent Multiprotocol Translator,” IEEE Internet Things J., vol. 4,

no. 5, pp. 1754–1763, 2017, doi: 10.1109/JIOT.2017.2697718.

[20] “Eclipse hawkBit.” https://www.eclipse.org/hawkbit/ (accessed Apr. 25, 2020).

[21] “Eclipse Hono.” https://www.eclipse.org/hono/ (accessed Apr. 25, 2020).

[22] M. Jones, J. Bradley, and N. Sakimura, “RFC 7519: JSON Web Token (JWT),”

2015.

[23] M. Jones, E. Rescorla, and J. Hildebrand, “RFC 7516: JSON Web Encryption

(JWE),” 2015.

[24] M. Jones, J. Bradley, and N. Sakimura, “RFC 7515: JSON Web Signature (JWS),”

2015.

[25] “OpenID Connect.” https://openid.net/connect/ (accessed Apr. 25, 2020).

[26] D. Hardt, “RFC 6749: The Oauth 2.0 Authorization Framework,” 2012.

[27] B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt, “RFC 8705: Oauth 2.0

Mutual-TLS Client Authentication and Certificate-Bound Access Tokens,” [Online].

Available: https://tools.ietf.org/html/rfc8705.

[28] “Keycloak.” https://www.keycloak.org/ (accessed Apr. 25, 2020).

[29] J. Bonér, D. Farley, R. Kuhn, and M. Thompson, “The Reactive Manifesto,”

Reactivemanifesto.Org, 2014.

[30] G. Jansen and P. Gollmar, Reactive Systems Explained. O’Reilly Media, Inc., 2020.

[31] “TechEmpower Framework Benchmarks.”

https://www.techempower.com/benchmarks/ (accessed Apr. 25, 2020).

[32] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for

Artificial Intelligence,” 1973, doi: 10.1145/359545.359563.

[33] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,

AMQP and HTTP,” 2017, doi: 10.1109/SysEng.2017.8088251.

[34] A. Melnikov and K. Zeilenga, “RFC 4422: Simple Authentication and Security

Layer (SASL),” 2006, [Online]. Available: https://tools.ietf.org/html/rfc4422.

[35] K. Hartke, “RFC 7641: Observing Resources in the Constrained Application

Protocol (CoAP),” 2015.

[36] L. Römer, S.E. Jeroschewski, and J. Kristan, „Leveraging Eclipse IoT in the

Arrowhead Framework,” NOMS 2020 – 2020 IEEE/IFIP Network Operations and

Management Symposium. IEEE Press, 2020.

https://www/
https://www/
https://www/
https://openid/
https://tools/
https://www/
https://www/
https://tools/

 Page 76 (79)

[37] Chiquito, A., Bodin, U., & Schelén, O. (2020). Access Control Model for Time Series

Databases using NGAC. Presented at the 25th International Conference on Emerging

Technologies and Factory Automation, Vienna, September 8-11, 2020.

[38] J Nilsson and F Sandin, Semantic Interoperability in Industry 4.0: Survey of Recent

Developments and Outlook, 2018 IEEE 16th International Conference on Industrial

Informatics (INDIN), pp. 127-132.

[39] J Nilsson, F Sandin, J Delsing, Interoperability and machine-to-machine translation

model with mappings to machine learning tasks, 2019 IEEE 17th International

Conference on Industrial Informatics (INDIN), pp. 284-289.

 J Nilsson, J Delsing and F Sandin, Autoencoder Alignment Approach to Run-Time

Interoperability for System of Systems Engineering, 2020 IEEE 24th International

Conference on Intelligent Engineering Systems (INES), pp. 139-144

[40]

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-

mcus.html

[41] Sudarsan, S. V., Schelén, O., and Bodin, U, A Model for Signatories in Cyber-Physical

Systems. Presented at the 25th International Conference on Emerging Technologies

and Factory Automation, Vienna, September pp. 8-11, 2020.

[42] P. Varga, D. Kozma, and C. Hegedűs, Data-Driven Workflow Execution inService

Oriented IoT Architectures. In2018 IEEE 23rd International Conference onEmerging

Technologies and Factory Automation (ETFA), volume 1, pages 203–210.IEEE, 2018

[43] D. Kozma, P. Varga, and K. Szabó. Achieving Flexible Digital Productionwith the

Arrowhead Workflow Choreographer. The 46th Annual Conference of theIEEE

Industrial Electronics Society (IECON), October 2020

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

 Page 77 (79)

28 Revision history

28.1 Contributing and reviewing partners

Contributions Reviews Participants Representing partner

Chapter 2, Arrowhead Framework
Mandatory Core – v4.2 LTU

Pal Varga, BME;
Szvetlin Tanyi, AITIA

BME, AITIA

Chapter 3, Eclipse IoT Integration BME
Johannes Kristan,
Bosch.IO GmbH; Lukas
Römer, Bosch.IO GmbH

Bosch.IO GmbH

Chapter 4 Eclipse Kapua and Kura Bosch, BME Paolo Azzoni, Eurotech Eurotech

Chapter 5 Onboarding Procedure,
Chapter 6 Monitoring and Standard
Compliance Verification

Bosch, BME
Silia Maksuti, Forschung
Burgenland

Forschung Burgenland

Chapter 7 Vital IoT Bosch, BME
Gerry Nigro, Concept
Reply

Concept Reply

Chapter 8 IKERLAN Tool Adapter Bosch, BME
Fernando Eizaguirre,
IKERLAN

IKERLAN

Chapter 9 Extended Historian Service Bosch, BME Mario Thron, ifak
IKT & Automation
ifak e.V. Magdeburg

Chapter 10 WAE (Web-of-Things
Arrowhead Enabler

Bosch, BME
Federico Montori,
UNIBO

University of Bologna,
Italy

Chapter 11 Python Client Library,
Chapter 12 Semantics translator ,
Chapter 13 Code generation,
Chapter 14 Integration of OPC-UA
server with late binding,
Chapter 15 Translator system,
Chapter 16 Exchange Negotiation
Service (from Productive 4.0),
Chapter Secure data sharing (new
concept),
Chapter 17 Secure Data Sharing
Chapter 18 Plant Description Engine
Chapter 19 Authorization by Power of
Attorney
20 Software Development and
virtualization
Chapter 21 Workflow Management
/Executor

Bosch, BME
Ulf Bodin, Lulea
Technical University

Lulea Technical
University

 Page 78 (79)

Chapter 22 Workflow Choreographer /
Workflow Executor

LTU
Pal Varga, BME

Kristóf Szabó, AITIA
BME, AITIA

Chapter 23 Energy IoT Monitoring
Platform

Bosch, BME

Marco Castangia, Polito

Gianvito Urgese, Polito

Politecnico di Torino

Chapter 24 Arrowhead Framework on
STM32

Bosch, BME Sara Bocchio ST-I

Chapter 25 Keycloak integration BME Szvetlin Tanyi AITIA

28.2 Amendments

No. Date Version Subject of Amendments Author

1 29.09.2020 0.1
Chapter abou Eclipse

Kura and Kapua added

Paolo Azzoni (integrated

by Johannes Kristan)

2 30.09.2020 0.2

Some fixes and

removals in Chapter 2

Eclipse IoT

Johannes Kristan

3 30.09.2020 0.3

Merged separate

References sections to

a unified references list

Johannes Kristan

4 30.09.2020 0.4

Chapter about

Arrowhead Framework

on STM32 added

Sara Bocchio

5 14.10.2020 0.5
Chapter on KeyCloak

Integration added
Szvetlin Tanyi

6 16.10.2020 0.6

Chapter on Workflow

Choreographer and

Executor added

Pal Varga

7 27.10.2020 0.7

Core v4.2-related

information added;

editing

Pal Varga

8 29.10.2020 0.8 Intro and Conclusion Pal Varga

9 30.10.2020 0.9 Editing for review Pal Varga

 Page 79 (79)

28.3 Quality assurance

No Date Version Approved by

1 22.11.2020 1.0 Jerker Delsing

